A = 1/1*3*7*9 + 1/ 3*7*9 + 1/ 7*9*13 + 1/ 9*13*15 +1/13*15*19
ai giúp mik giải bài này đúng mik tick cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1^3-3^5-(-3^5)+1^64-2^9-1^36+1^15
=1+(-3^5+3^5)+1-2^9-1+1
=2-2^9
=-510
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
Chắc bạn gõ nhầm số hạng thứ 3 phải là +5/7.
Tổng này đối xứng qua 13/15. Các đối xứng trái dấu nên Tổng = 13/15
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1\)
\(=\frac{7}{6}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(=\frac{5}{6}+\frac{7}{13}-\frac{2}{9}\)
\(=\frac{195+126-52}{234}\)
\(=\frac{269}{234}\)
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1=\frac{1}{6}+\frac{6}{6}\)
\(=\frac{7}{6}\)
\(\frac{-7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\frac{2}{13}+\frac{-7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\left(\frac{2}{13}+\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{-7}{9}.1+\frac{-2}{9}\)
\(=\frac{-7}{9}+\frac{-2}{9}\)
\(=\frac{-9}{9}=-1\)
\(\frac{2}{13}.\frac{2}{7}.5\)
\(=\frac{2.2.5}{13.7}\)
\(=\frac{20}{91}\)
\(\frac{1}{5}.\frac{11}{12}.\frac{21}{6}\)
\(=\frac{11.21}{5.12.6}\)
\(=\frac{231}{360}=\frac{77}{120}\)
\(A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Leftrightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
\(A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+\frac{4}{7.9.11}+\frac{4}{9.11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
Số phần tử của tập B là: 7+6+5+4+3+2+1=7*8/2=28 phân số
4029.304029
\(\frac{227}{17955}\)