Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH và đường phân giác BE của tam giác ABC A)Chứng minh tam giác ABC đồng dạng tam giác HBA và AB2 = BH.BC B)Gọi I là hình chiếu của C trên đường thẳng BE, N là giao điểm của BA và CI. Chứng minh IC2 = IE.IB C)Qua E vẽ đường thẳng vuông góc với BI, trên đường thẳng này lấy điểm M sao cho IA = IM. Chứng minh tam giác BMI vuông.
Mình chỉ cần câu C ai biêt hay có gợi ý gì xin chỉ giáo.
a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔAEB và ΔIEC có
góc BAE=góc EIC
góc AEB=góc IEC
=>góc ABE=góc ICE=góc IBC
=>ΔIEC đồng dạng với ΔICB
=>IE/IC=IC/IB
=>IC^2=IE*IB
c: Xét ΔBNC có
BI vừa là phân giác, vừa là đường cao
=>ΔBNC cân tại B
=>I là trung điểm của NC
ΔNAC vuông tại A
mà I là trung điểm của NC
nên IA=IN=IC
=>IN^2=IE*IB
và IA=IM
nên IM^2=IE*IB
=>IM/IE=IB/IM
=>ΔIMB đồng dạng với ΔIEM
=>góc IMB=90 độ
=>ĐPCM