K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html

b, Gọi d là ƯCLN(tử;mẫu)

=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)

Hay \(4n+51-42n-50⋮d\)

=> \(1⋮d\)

Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.

14 tháng 7 2018

a,

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮d⇔d=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

30 tháng 4 2018

a, Gọi UCLN ( 12n + 1 và 30n + 2 ) là d

=> 12n + 1 chia hết cho d 

30n + 2 chia hết cho d

Ta có : 

12n + 1 = 5 ( 12n + 1 ) = 60n + 5 chia hết cho d

 30n + 2 = 2 ( 30n + 2 ) + 60n + 4 chia hết cho d

=> ( 60n + 5 ) - ( 60n + 4 )  chia hết cho d

= 1 chia hết cho d

=) d = 1 

=) \(\frac{12n+1}{30n+2}\)là phân số tối giản

Vậy ...

Phần b làm tương tự ~~

14 tháng 5 2018

Toán lật phần giải ra mà tìm:

Hay lên Google

... -_-'

     

25 tháng 4 2015

vì phân số tối giản có ước chung tử và mẫu là 1 giả sử A không phân số tối giản 

gọi ước chung của tử và mẫu phân số A là d ta có 

12n+1 chia hết cho d 

suy ra 5(12n+1) chia hết cho d

30n+2 chia hết chia hết cho d

suy ra 2(30n+2) chia hết cho d

vậy 5(12n+1) - 2(30n+2)chia hết cho d

(60n+5) - (60n+4) chia hết cho d

suy ra 1 chia hết cho d

vậy d bằng 1

suy ra A là tối giản

14 tháng 7 2018

a, ạ

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮d⇔d=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

16 tháng 5 2017

a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản

b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
 

16 tháng 5 2017

Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì 
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)\(\frac{en+g}{bn+c}\)là các phân số tối giản

21 tháng 7 2020

Gọi \(d=UCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)

Suy ra phân số đã cho là phân số tối giản (đpcm)

Cái sau tương tự nha bạn

Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1

Vậy với x=1 thì C đạt giá trị nhỏ nhất

Cái sau tương tự nha bạn

21 tháng 7 2020

a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .

8 tháng 5 2018

a) Gọi UCLN ( 12n+1; 30n+2) là d

ta có: 12n +1 chia hết cho d => 5.(12n+1) chia hết cho d => 60n + 5 chia hết cho d

30n + 2 chia hết cho d => 2.(30n+2) chia hết cho d => 60n + 4 chia hết cho d

=> 60n + 5 -  60n - 4 chia hết cho d => 1 chia hết cho d

=> A = 12n+1/30n+2 là phân số tối giản

b) Gọi UCLN(14n+17;21n+25) là d

ta có: 14n + 17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d

21n + 25 chia hết cho d => 2.(21n+25) chia hết cho d => 42n + 50 chia hết cho d

=> 42n + 51 - 42n - 50 chia hết cho d => 1 chia hết cho d

=> B = 14n+17/21n+25 là phân số tối giản

8 tháng 5 2018

a) Gọi ƯCLN của 12n +1 và 30n+2 là d

   Suy ra 12n+1 chia hết cho d ,  30n+2 chia hết cho d

          5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

          60n +5    chia hết cho d và 60n + 4 chia hết cho d

 Suy ra   60n+5 - (60n +4) chia hết cho d

  Suy ra :             1 chia hết cho d

 Suy ra d thuộc tập hợp ước của 1 

 Suy ra d thuộc {-1;1}

Vậy \(\frac{12n+1}{30n+2}\)tối giản

b) Gọi ƯCLN của 14n+17 và 21n+25 là a

Ta có : 14n+17 chia hết cho a và 21n+25 chia hết cho a

Suy ra: 3(14n+17) chia hết cho a và 2(21n+25) chia hết cho a

            42n+51 chia hết cho a và 42n +50 chia hết cho a

Suy ra : 42n+51 - ( 42n+50) chia hết cho a

Suy ra:          1 chia hết cho a

Suy ra : a thuộc tập hợp ước của 1 ={1;-1}

            Vậy \(\frac{14n+27}{21n+25}\)tối giản

Giải:

a) \(A=\dfrac{12n+1}{30n+2}\) 

Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)      \(\Rightarrow\left[{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\)        \(\Rightarrow\left[{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản

b) \(B=\dfrac{14n+17}{21n+25}\) 

Gọi \(ƯCLN\left(14n+17;21n+25\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản

Chúc bạn học tốt!

2 tháng 8 2015

a) Gọi d = ƯCLN (12n + 1; 30n + 2)

=> 12n + 1 chia hết cho d

30n + 2 chia hết cho d

=> 5. (12n + 1) chia hết cho d và 2. (30n + 2) chia hết cho d

Hay  60n + 5  chia hết cho d và  60n + 4  chia hết cho d

=> 60n + 5 - (60n + 4) = 1 chia hết cho d => 1 chia hết cho d => d = 1

=> 12n + 1 và 30n + 2 nguyên tố cùng nhau => PS đã cho tối giản

2 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản