K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

vì căn 5 -2>0 => hàm số nghịch biến khi x<0, đồng biến khi x>0

15 tháng 4 2017

vì căn5 - 2 >0 nên hàm số đồng biến khi x>0, nghịch biến khi x<0

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến

b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:

\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)

\(=9-8+\sqrt{2}-1\)

\(=\sqrt{2}\)

22 tháng 7 2021

a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.

b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`

`=> y=\sqrt2` khi `x=3+2\sqrt2`

9 tháng 11 2019

Tập xác định: D = R

y'= -3x2 + 2x

y' = 0 ⇔ -3x2 + 2x = 0 ⇔ x.(-3x + 2) = 0 ⇔ Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số nghịch biến trong các khoảng (-∞ ; 0) và (2/3 ; + ∞), đồng biến trong khoảng (0 ; 2/3).

14 tháng 9 2019

29 tháng 9 2017

TXĐ: R

y′ = 4 x 3  + 16 = 4x( x 2  + 4)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; + ∞ ) ⇒ y đồng biến trên khoảng (0; + ∞ )

y' < 0 trên khoảng (- ∞ ; 0) ⇒ y nghịch biến trên khoảng (- ∞ ; 0)

15 tháng 1 2019

 Với x 1 ≠ x 2  ta có:

f x 2 - f x 1 x 2 - x 1 = - x 2 2 + 4 x 2 - 2 - - x 1 2 + 4 x 1 - 2 x 2 - x 1 = - x 2 2 - x 1 2 + 4 ( x 2 - x 1 ) x 2 - x 1 = - x 2 + x 1 + 4 .

·     Với  x 1 , x 2 ∈ - ∞ ; 2  thì x1 < 2; x2 <2 nên  x 1 + x 2 < 4 ⇒ - x 1 + x 2 + 4 > 0 nên f(x) đồng biến trên khoảng  - ∞ ; 2 .

·         ·     Với  x 1 , x 2 ∈ 2 ; + ∞  thì x1>2; x2 >2 nên  x 1 + x 2 > 4 ⇒ - x 1 + x 2 + 4 < 0 nên f(x) nghịch biến trên khoảng   2 ; + ∞ .

Vậy đáp án là A.

Nhận xét: Với 4 phương án trả lời cho ta biết f(x) đồng biến hoặc nghịch biến trên mỗi khoảng  - ∞ ; 2  và  2 ; + ∞ .

 

 Vì vậy, ta lấy hai giá trị bất kì x 1 < x 2  thuộc mỗi khoảng rồi so sánh  f x 1  và  f x 2 . Chẳng hạn x 1 = 0 ; x 2 = 1 có f 0 = - 2 ; f 1 = 1 nên f 0 < f 1 , suy ra f(x) đồng biến trên khoảng  - ∞ ; 2 .

4 tháng 5 2017

Ta có: y = 5 – 2 x 2  không phải là hàm số bậc nhất

NV
30 tháng 3 2023

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

1 tháng 8 2017

Tập xác định : D = R

y' = 3 – 2x

y’ = 0 ⇔ 3 – 2x = 0 ⇔ x = Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).