K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Ta có: x^4 lớn hơn hoặc bằng 0

        2*x^2 lớn hơn hoặc bằng 0

=> P(x) = x^4 + 2*x^2 + 1 > 0

=> Đa thức P(x) không có nghiệm

13 tháng 4 2017

P(x) = x4 + 2x2 + 1 = 0

P(x) = (x+ 1)2 = 0

P(x) = x2 + 1 = 0

P(x) = x2 = -1

     mà x2 \(\ge\) 0 > 1 với mọi x

Vậy đa thức vô nghiệm

                  

30 tháng 8 2015

bn ơn , cái này vốn dĩ có nghiệm mà , s mà chứng minh vô nghiệm đc

30 tháng 4 2018

Ta có : \(N\left(x\right)=4x^4+x^2+x\)

Mà \(4x^4>0\)

     \(x^2>0\)

  \(\Rightarrow\left(4x^4+x^2+x\right)>0\)

\(\Leftrightarrow N\left(x\right)>0\)

\(\Leftrightarrow N\left(x\right)\)vô nghiệm .

Chúc bạn hok tốt !!!

f(x)=5x3+2x4-x2+3x2-x3-x4+1-4x3

=(5x3-x3-4x3)+(2x4-x4)+(3x2-x2)+1

=0+x4+2x2+1>(=)0+0+0+1=1

=>đa thức f(x) không có nghiệm

=>đpcm

20 tháng 5 2021

a) Cho x2-1=0
            x2=1
            x= 1  hoặc -1

b)Cho P(x)=0
          -x2 + 4x - 5 = 0
          -x2 + 4x = 5
          -x   . x + 4x = 5
          x(-x+4) = 5

TH1: x= 5
TH2: -x+4 = 5
         -x= 1
          x=-1
xong bạn thay số rồi kết luận nhá

20 tháng 5 2021

a,\(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

KL:...

b,\(P\left(x\right)=-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)

\(\Rightarrow VN\)

4 tháng 8 2017

Con Lê na học ở cô thảo chí

4 tháng 8 2017

a) Ta thấy x^2 \(\ge\)0

\(\Rightarrow\)x^2+1\(\ge\)1\(\ne\)0

\(\Rightarrow\)x^2+1 không có nghiệm hay P(x) không có nghiệm

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

8 tháng 5 2018

Ta có x4 \(\ge\)0 với mọi x

2x2 \(\ge\)0 với mọi x

\(\Rightarrow\)x^4-2x^2+2 \(\ge\) 2 

\(\Rightarrow\) M(x) \(\ge\)2

VẬY đa thức M(x)=x^4-2x^2+2 ko có nghiệm

27 tháng 5 2020

x2+4x+5=x2+4x+4+1=(x+2)2+1 >= 0+1 =1>0 do đó đa thức trên ko có nghiệm

x2+6x+10=x2+6x+9+1=(x+3)2+1 >=0+1=1>0 do đó đa thức trên ko có nghiệm

8 tháng 4 2018

a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)

Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x

=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x

=> f (x) vô nghiệm (đpcm)

b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x

=> P (x) vô nghiệm (đpcm)