chứng minh: B=16^2+2^15 chia hết cho 129
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
B,
ta thấy:
16^5=2^20
=> A=16^5 + 2^15
= 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
a) \(5+5^2+5^3+....+5^{100}\)
đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )
\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^{99}.6\)
\(A=6\left(5+5^3+....+5^{99}\right)\)
vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)
b) \(2+2^2+2^3+....+2^{100}\)
đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )
\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )
\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(B=2.31+....+2^{96}.31\)
\(B=31\left(2+...+2^{96}\right)\)
vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)
a) 5+5^2+5^3..+5^100
=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)
=5.6+5^3.6+.....+5^99.6
=6.(5+5^3+.....+5^99):6
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
Tham khảo
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
kết quả là 1081344 chia hết cho 33
thế thì chia hết cho 33
hì bì mk học dốt toán
c) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
a) Ta có:
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=14+...+2^{21}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{21}.14\)
\(\Rightarrow A=\left(1+...+2^{21}\right).14⋮14\)( đpcm )
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{21}+2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{21}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+...+2^{21}.15\)
\(\Rightarrow A=15\left(2+...+2^{21}\right)⋮15\left(đpcm\right)\)
b) Mk sửa đề chút là A chia 16 dư 15 nhé
Ta có:
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{20}+2^{21}+2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{20}\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow A=2.31+...+2^{20}.31\)
\(\Rightarrow A=\left(2+2^{20}\right).31\)
Vì 31 chia 16 dư 15 nên suy ra đpcm
B=2^8+2^15=2^8(1+2^7)=256(1+2^7) chia hết cho 129