tìm các số tự nhiêm a,b thỏa mãn: 11/17<a/b<23/29và 8b-9a=31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k\)
\(\frac{c}{d}=\frac{11}{13}=\frac{11m}{13m}=>c=11m,d=13m=>M=c+d=11m+13m=24m\)
\(\frac{e}{f}=\frac{13}{17}=\frac{13n}{17n}=>e=13n,f=17n=>M=e+f=13n+17n=30n\)
=>M=36k=24m=30n
=>M chia hết cho 36,24,30
Ta thấy: ƯCLN(36,24,30)=360
=>M chia hết cho 360
=>M=360h
mà M là số bé nhất có 4 chữ số=>h bé nhất
=>999<360h
=>2<h
mà h bé nhất
=>h=3
=>M=3.360=1080
Vậy M=1080
$\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k$
Bạn vào link này nhé:https://olm.vn/hoi-dap/question/116944.html
Tìm số tự nhiên a,b thỏa mãn điều kiện:
\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và 8b-9a=31
Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)
Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)
\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)
Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)
Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)
\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)
(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)
Với \(a=17\Rightarrow b=23\)
Với \(a=25\Rightarrow b=32\)
Trả lời
Cậu xem tại link:
Câu hỏi của nguyễn nam dũng - Toán lớp 6 - Học toán với OnlineMath
~Hok tốt~