K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Chọn D

Cách 1:

 

Gọi các điểm được đánh dấu để chia đều các cạnh của tứ diện đều ABCD như hình vẽ.

+ Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Số phần tử của S là số cách chọn ra 3 điểm không thẳng hàng trong số 18 điểm đã cho.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách.

Chọn ra 3 điểm thẳng hàng trong 18 điểm trên có 6. C 6 3 = 6 cách.

Suy ra số tam giác thỏa mãn là  C 18 3 - 6 = 810

+ Gọi T là tập hợp các tam giác lấy từ ABCD sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện ABCD.

- Chọn 1 cạnh của tứ diện để mặt phẳng chứa tam giác chỉ song song với đúng cạnh đó: có  C 6 1  cách.

Xét các tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD, suy ra tam giác đó phải có một cạnh song song với BD.

- Có 6 cách chọn cạnh song song với BD là

- Giả sử ta chọn cạnh  M 2 N 2  là cạnh của tam giác. Cần chọn đỉnh thứ 3 của tam giác trong 16 điểm còn lại. 

Do  M 2 N 2 ⊂ (ABD) mà mặt phẳng chứa tam giác song song với BD nên đỉnh thứ 3 không thể là 7 điểm còn lại nằm trong mp(ABD).

Do mặt phẳng chứa tam giác chỉ song song với BD nên đỉnh thứ 3 không được trùng với một trong ba điểm E 2 ,   F 2 ,   P 2 . Vậy đỉnh thứ 3 chỉ được chọn trong 16 -7 - 3 = 6 điểm còn lại.

Suy ra có 6 tam giác có 1 cạnh là  M 2 N 2 và mặt phẳng chứa nó chỉ song song với BD.

Vậy số tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD là: 6.6 = 36.

Tương tự cho các trường hợp khác, ta có số tam giác mà mặt phẳng chứa nó chỉ song song với đúng một cạnh của tứ diện ABCD là: 36.6 = 216.

Vậy xác suất cần tìm là 

Cách 2: Lưu Thêm

+) Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách. 

Trong số  C 18 3  đó, có 6 cách chọn ra 3 điểm thẳng hàng trên các cạnh.

Suy ra n(S) =  C 18 3 - 6 = 810

+) Xét phép thử: “Lấy ngẫu nhiên một phần thử thuộc S”. Ta có

+) Gọi T là biến cố: “Mặt phẳng chứa tam giác được chọn song song với đúng một cạnh của tứ diện đã cho”.

Chọn một cạnh của tứ diện: 6 cách, (giả sử chọn AB).

Chọn đường thẳng song song với AB: 6 cách, (giả sử chọn PQ).

Chọn đỉnh thứ 3: 6 cách, (M, N, E, K, F, I).

Suy ra n(T) = 6.6.6 = 216

Vậy 

16 tháng 10 2021

Đùa bạn à, thầy Cẩn đâu cho đưa câu hỏi lên đây đâu.

9 tháng 2 2018

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần cm SFGH=12SABCD
SFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SFAD−12(SFAC+SFBD)−12SACD−12SDGB
=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)

25 tháng 2 2019

                            Giải

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD

Ta cần chứng minh: \(S_{FGH}=\frac{1}{2}S_{ABCD}\)

               \(S_{FGH}=S_{FAD}-S_{FAG}-S_{FDH}-S_{AGD}-S_{DGH}\)

              \(=S_{AFD}-\frac{1}{2}\left(S_{FAC}+S_{FBD}\right)-\frac{1}{2}S_{ACD}-\frac{1}{2}S_{DGB}\)

\(=S_{ACD}+S_{ABC}+S_{FBC}-\frac{1}{2}\left(S_{ABC}+S_{FBC}+S_{DBC}+S_{FBC}\right)-\frac{1}{2}S_{ACD}\)

\(-\frac{1}{2}\left(S_{ACD}+S_{ABC}-S_{ADG}-S_{ABG}-S_{DBC}\right)\)

\(=\frac{1}{2}\left(S_{ADG}+S_{ABG}\right)=\frac{1}{2}.\frac{1}{2}\left(S_{ACD}+S_{ABC}\right)=\frac{1}{4}S_{ABCD}\left(đpcm\right)\)

27 tháng 2 2019

Giải

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD

Ta cần chứng minh: SFGH=12 SABCD

               SFGH=SFAD−SFAG−SFDH−SAGD−SDGH

              =SAFD−12 (SFAC+SFBD)−12 SACD−12 SDGB

=SACD+SABC+SFBC−12 (SABC+SFBC+SDBC+SFBC)−12 SACD

−12 (SACD+SABC−SADG−SABG−SDBC)

=12 (SADG+SABG)=12 .12 (SACD+SABC)=14 SABCD(đpcm)