A=5+5/2+5/2^2+5/2^3+...+5/2^11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(1500-\left\{5^3.2^3-11\left[7^2-5.2^3+8\cdot\left(11^2-121\right)\right]\right\}\)
\(=1500-\left\{\left(5.2\right)^3-11\left[9+8\left(11^2-11^2\right)\right]\right\}\)
\(=1500-\left\{10^3-11.9\right\}\)
\(=1500-901=599\)
b/
\(S=5+5^2+5^3+...+5^{2012}\)
\(5S=5^2+5^3+5^4+...+5^{2013}\)
\(4S=5S-S=5^{2013}-5\)
\(S=\frac{5^{2013}-5}{4}\)
a ; 1500 - { 5 ^ 3 . 2 ^ 3 - 11 [ 7 ^ 2 - 5 . 2 ^ 3 + 8 ( 11 ^ 2 - 121) ] }
a ; 1500 - { 5 ^ 3 . 2 ^ 3 - 11 [ 7 ^ 2 - 5 . 2 ^ 3 + 8 ( 121 - 121) ] }
a ; 1500 - [ 5 ^ 3 . 2 ^ 3 - 11 ( 7 ^ 2 - 5 . 2 ^ 3 + 8 . 0 ) ]
a ; 1500 - [ 5 ^ 3 . 2 ^ 3 - 11 ( 49 - 5 .8 + 8 . 0) ]
a ; 1500 - [ 5 ^ 3 . 2 ^ 3 - 11 ( 49 - 40 + 0 ) ]
a ; 1500 - ( 5 ^ 3 . 2 ^ 3 - 11 . 9 )
a ; 1500 - [ ( 5 . 2 ) ^ 3 - 99]
a ; 1500 - ( 10 ^ 3 - 99)
a ; 1500 - ( 1000 - 99)
a ; 1500 - 901
a = 599
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)
a) 2/5 x 1/4 + 3/4 x 2/5
= 2/5 x (1/4 + 3/4)
= 2/5 x 1
= 2/5
b) 6/11 : 2/3 + 5/11 : 2/3
= (6/11 + 5/11) : 2/3
= 1 : 2/3
= 3/2
Giải:
A=5+5/2+5/22+5/23+...+5/211
A=5.(1+1/2+1/22+1/23+...+1/211)
Gọi tổng trong ngoắc là B, ta có:
B=1+1/2+1/22+1/23+...+1/211
2B=2+1+1/2+1/22+...+1/210
2B-B=(2+1+1/2+1/22+...+1/210)-(1+1/2+1/22+1/23+...+1/211)
B=2-1/211
⇒A=5.(2-1/211)
A=10-5/211
Chúc bạn học tốt!
mk viết nhầm:
gọi tổng trong ngoặc chứ ko phải gọi tổng trong ngoắc đâu nhá!