Giải phương trình : x3 - \(\frac{^{x^3}}{\left(x-1\right)^3}\)+\(\frac{3x^2}{x-1}\)+ 7 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
ĐKXĐ; \(x\ne1\)
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}+7=0\)
\(\Rightarrow\left(x+\frac{x}{x-1}\right)^3-3\cdot x\cdot\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}+7=0\)
\(\Rightarrow\left(\frac{x^2}{x-1}\right)^3-3\cdot\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}+7=0\)
Đặt \(\frac{x^2}{x-1}=a\),khi đó
\(a^3-3a^2+3a+7=0\)\(\Rightarrow a=-1\)
Theo cách đặt,ta có: \(\frac{x^2}{x-1}=-1\Rightarrow x^2+x-1=0\Rightarrow\orbr{\begin{cases}x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{cases}}\)(TMĐKXĐ)
vậy ....
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
\(ĐK:x\ne\frac{-1}{3}\)
\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)
\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2
Vậy...........
\(\frac{3}{7}x-1-\frac{3}{7}x^2+x=0\)=> 3x-7-3x2 + 7x = 0 => 3x2 -10x +7 =0
=> 3x2 -3x-7x +7 =0 => 3x(x-1)-7(x-1)=0 => (3x-7)(x-1)=0 => x=7/3 hoặc x=1