Cho n đường thẳng trong đó bất cứ 2 đường thẳng nào cũng cắt nhau không có 3 đường thẳng nào đồng quy. Biết số giao điểm của chúng là 780. Tìm n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a làm tắt e tự trình bài nhé có j hỏi a
\(\dfrac{n.\left(n-1\right)}{2}=780\Leftrightarrow n\left(n-1\right)=1560=40.39\\ \Rightarrow n=40\)
um em có í kiến là mik chênh lệnh có 1,2 tuổi thì mik có thể xưng hô bạn bè được ko ạ
cứ hai đường thẳng không tính thứ tự thì sẽ có 1 giao điểm phân biệt với mọi giao điểm khác
nên ta có phương trình sau :
\(\frac{n\times\left(n-1\right)}{2}=780\Leftrightarrow\left(n-40\right)\left(n+39\right)=0\Leftrightarrow\orbr{\begin{cases}n=40\\n=-39\end{cases}}\)
mà n là số tự nhiên nên n =40 hay có 40 đường thẳng
Có n điểm đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có 3 đường thẳng nào đồng quy
=>Số giao điểm là:
n . (n-1) : 2=780
n . (n-1)= 1560 =40 . 39
=> n = 40
Vậy có tất cả 40 đường thẳng
Chọn một đường thẳng cắt n-1 đường thẳng còn lại ta được n-1 giao điểm
Làm tương tự với n-1 đường thẳng còn lại ta được tất cả : (n-1)xn giao điểm
Như vậy mỗi giao điểm đã được tính hai lần
Vây số đường thẳng thực có là:(n-1)xn:2(giao điểm)
Theo bài ta có 780 giao điểm
(n-1)xn:2=780
(n-1)xn=780x2=1560
Vì (n-1)xn là tích của hai số tự nhiên liên tiếp.Mà 1560=39x40
n=40
Vậy n=40
Chúng ta tìm được n = 40