K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

em chép nhầm đề à

9 tháng 4 2017

dạ đề thi toán 7 cấp thành phố

ko sai đâu ạ

5 tháng 10 2015

a; b; c là 3 cạnh của tam giác => |a - c| < b ; |a - b| < c ; |b - c| < a

=> (|a - c|)2 < b2 => a2 - 2ac + c< b2  (1)

(|a - b|)2 < c=> a- 2ab + b< c2   (2)

(|b - c|)2 < a2 => b2 - 2bc + c< a2   (3)

Cộng từng vế của  (1)(2)(3) ta được: 2(a2 + b+ c2) - 2(ab + bc + ca) < a+ b+ c2

=> a+ b+ c< ab + bc + ca (đpcm)

18 tháng 4 2022

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

18 tháng 4 2022

đúng trẻ trâu

8 tháng 8 2016

Vì a,b,c là độ dài ba cạnh của một tam giác nên a,b,c > 0

Áp dụng bđt Cauchy : \(b^2+1\ge2\sqrt{b^2}=2\left|b\right|=2b\)\(\Rightarrow a\left(1+b^2\right)\ge2ab\)

Tương tự : \(b\left(1+c^2\right)\ge2bc\) , \(c\left(1+a^2\right)\ge2ac\)

Cộng các bđt trên ta được đpcm

20 tháng 2 2022

`Answer:`

Tam giác nào cũng luôn luôn có tổng hai cạnh bất kỳ lớn hơn cạnh còn lại

\(\Leftrightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Leftrightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\b\left(a+c\right)>b^2\\a\left(b+c\right)>a^2\end{cases}}}\)

`<=>c(a+b)+b(a+c)+a(b+c)>a^2+b^2+c^2`

`<=>ca+cb+ab+bc+ab+ac>a^2+b^2+c^2`

`<=>2(ab+bc+ac)>a^2+b^2+c^2`

27 tháng 12 2021

mới lớp 7 a ới

29 tháng 1 2016

đề bài hỏi gì bạn
 

28 tháng 5 2018

Ta có :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)       (1)

Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :

\(a^2< a.\left(b+c\right)\)

\(\Rightarrow a^2< ab+ac\)

Tương tự :

\(b^2< ab+bc\)

\(c^2< ca+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)              (2)

Từ (1) và (2)

=> Đpcm