tìm x E Z để phân số sau đây là số nguyên
A=x^2+1/x+1
B=2x+2/x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)
\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{1;0\right\}\)
a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3
Ta có bảng:
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.
Làm tương tự như câu a.
Các ý còn lại giống phương pháp của câu a và d
a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)
b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)
\(\Leftrightarrow-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)
\(\Leftrightarrow7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
a, `2/(x-1) in ZZ`.
`=> 2 vdots x - 1`
`=> x-1 in Ư(2)`
`=> x - 1 in {+-1, +-2}`.
`=> x - 1 = 1 => x = 2`.
`=> x - 1 = -1 => x = 0`.
`=> x - 1 = -2 => x = -1`.
`=> x - 1 = 2 => x = 3`.
Vậy `x = 2, 0, - 1, 3`.
b, `4/(2x-1) in ZZ`
`=> 4 vdots 2x - 1`.
`=> 2x - 1 in Ư(4)`
Vì `2x vdots 2 => 2x - 1 cancel vdots 2`
`=> 2x - 1 in {+-1}`
`=> 2x - 1 = -1 => x = 0`.
`=> 2x - 1 = 1 => x = 1`
Vậy `x = 0,1`.
c, `(x+3)/(x-1) in ZZ`.
`=> x + 3 vdots x - 1`
`=> x - 1 + 4 vdots x - 1`.
`=> 4 vdots x-1`
`=> x -1 in Ư(4)`
`=> x - 1 in{+-1, +-2, +-4}`
`x - 1 = 1 => x = 2`.
`x - 1 = -1 => x = 0`.
`x - 1 = 2 =>x = 3`.
`x - 1 = -2 => x = -1`.
`x - 1 = 4 => x = 5`.
`x - 1 = -4 => x = -3`.
Vậy `x = 2, 0 , +-1, 5, -3`.
Bài 4:
a: =>7/x-5=2
=>x-5=7/2
=>x=17/2
b: =>1-2x=-5
=>2x=6
=>x=3
c: =>2x-3=5 hoặc 2x-3=-5
=>2x=8 hoặc 2x=-2
=>x=-1 hoặc x=4
d: =>2(x+1)^2+17=21
=>2(x+1)^2=4
=>(x+1)^2=2
=>\(x+1=\pm\sqrt{2}\)
=>\(x=\pm\sqrt{2}-1\)
a: Để C là số nguyên thì \(3x^3+6x^2+3x+x^2+2x+1-2⋮x^2+2x+1\)
=>\(x^2+2x+1\in\left\{1;-1;2;-2\right\}\)
=>(x+1)^2=1 hoặc (x+1)^2=2
=>\(x\in\left\{0;-2;\sqrt{2}-1;-\sqrt{2}-1\right\}\)
b: Để D là số nguyên thì \(x^4+x^2+x^3+x-29⋮x^2+1\)
=>\(x^2+1\in\left\{1;-1;29;-29\right\}\)
=>x^2+1=1 hoặc x^2+1=29
=>\(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)
a: Để A nguyên thì 4x+2 chia hết cho 5x+1
=>20x+10 chia hết cho 5x+1
=>20x+4+6 chia hết cho 5x+1
=>5x+1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {0;-2/5;1/5;-3/5;2/5;-4/5;1;-7/5}
b: B nguyên
=>x^2+3x+9 chia hết cho x+3
=>9 chia hết cho x+3
=>x+3 thuộc {1;-1;3;-3;9;-9}
=>x thuộc {-2;-4;0;-6;6;-12}
c: Để C nguyên thì x^2+9 chia hết cho x+2
=>x^2-4+13 chia hết cho x+2
=>x+2 thuộc {1;-1;13;-13}
=>x thuộc {-1;-3;11;-15}
`a)A` nguyên `<=>x+2 in Ư_5`
Mà `Ư_5 ={+-1;+-5}`
`@x+2=1=>x=-1`
`@x+2=-1=>x=-3`
`@x+2=5=>x=3`
`@x+2=-5=>x=-7`
______________________________________________
`b)B=[x-5]/x=1-5/x`
`B` nguyên `<=>x in Ư_{5}`
Mà `Ư_{5}={+-1;+-5}`
`=>x in {+-1;+-5}`
______________________________________________
`c)C=[x-2]/[x+1]=[x+1-3]/[x+1]=1-3/[x+1]`
`C` nguyên `<=>x+1 in Ư_3`
Mà `Ư_3={+-1;+-3}`
`@x+1=1=>x=0`
`@x+1=-1=>x=-2`
`@x+1=3=>x=2`
`@x+1=-3=>x=-4`
______________________________________________
`d)D=[2x-7]/[x+1]=[2x+2-9]/[x+1]=2-9/[x+1]`
`D` nguyên `<=>x+1 in Ư_9`
Mà `Ư_9 ={+-1;+-3;+-9}`
`@x+1=1=>x=0`
`@x+1=-1=>x=-2`
`@x+1=3=>x=2`
`@x+1=-3=>x=-4`
`@x+1=9=>x=8`
`@x+1=-9=>x=-10`
a, \(\dfrac{3}{x-2}\left(ĐKXĐ:x\ne2\right)\)
Để A nguyên thì \(3⋮x-2\)hay \(x-2\inƯ\left(3\right)\)
Xét bảng :
Ư(3) | x-2 | x |
3 | 3 | 5 |
-3 | -3 | -1 |
1 | 1 | 3 |
-1 | -1 | 1 |
Vậy để A nguyên thì \(x\in\left\{-1;1;3;5\right\}\)
b,\(B=-\dfrac{11}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
Để B nguyên thì
\(2x-3\inƯ\left(-11\right)\)( thuộc Ư(11) cũng được nhé như nhau cả )
Xét bảng :
2x-3 | x |
11 | 7 |
-11 | -4 |
1 | 2 |
-1 | 1 |
Vậy để B nguyên thì \(x\in\left\{-4;1;2;7\right\}\)
c, \(C=\dfrac{x+3}{x+1}=\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\left(ĐKXĐ:x\ne-1\right)\)Để C nguyên thì \(x+1\inƯ\left(2\right)\)
Xét bảng :
x+1 | x |
2 | 1 |
-2 | -3 |
1 | 0 |
-1 | -2 |
Vậy để C nguyên thì \(x\in\left\{-3;-2;0;1\right\}\)
d, \(D=\dfrac{2x+10}{x+3}=\dfrac{2x+6+4}{x+3}=\dfrac{2\left(x+3\right)}{x+3}+\dfrac{4}{x+3}=2+\dfrac{4}{x+3}\left(ĐKXĐ:x\ne-3\right)\)
Để D nguyên thì \(x+3\inƯ\left(4\right)\)
Xét bảng:
x+3 | x |
1 | -2 |
-1 | -4 |
2 | -1 |
-2 | -5 |
4 | 1 |
-4 | -7 |
Vậy để D nguyên thì \(x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
1: Để A nguyên thì x+3-4 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2: Để B nguyên thì 2x+4-9 chia hết cho x+2
=>\(x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{-1;-3;1;-5;7;-11\right\}\)