Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N.
a. Chứng minh tam giác BED và tam giác BCH đồng dạng
b. Chứng minh: HM=HN
c. Gọi I; J; Q; K lần lượt là hình chiếu của F trên AC; AD; BE; BC. Chứng minh I; J; Q; K
a)Xét tam giác BDH và tam giác BEC có: góc B chung ; góc BDH = góc BEC = 90
=> tam giác BDH đồng dạng với tam giác BEC (g-g)
=> BD/BE = BH/BC => BD/BH = BE/BC
Xét tam giác BED và tam giác BCH có: góc B chung; BD/BH = BE/BC (cmt)
=> tam giác BED đồng dạng với tam giác BCH (c-g-c)
b)Xét tam giác BFH và tam giác CEH có: BFH = CEH = 90; BHF = CHE (đối đỉnh)
=> tam giác BFH đồng dạng với tam giác CEH (g-g)
=> FH/EH = BH/CH => FH/BH = EH/CH
Xét tam giác FEH và tam giác BCH có: FHE = BHC (đối đỉnh); FH/BH = EH/CH (cmt)
=> tam giác FEH đồng dạng với tam giác BCH (c-g-c)
=> FEH = BCH hay MEH = BCH(1)
VÌ tam giác BED đồng dạng với tam giác BCH (cmt) => BED = BCH hay HEN = BCH(2)
Từ (1),(2)=> MEH = HEN
Xét tam giác MHE và tam giác NHE có: HME = HNE =90; HE chung ; MEH = NEH(cmt)
=> tam giác MHE bằng tam giác NHE (ch-gn)
=> HM = HN(2 cạnh tương ứng)
còn câu c) mình chưa làm được, bạn làm được chưa ? làm giùm mình với