Cho B=-x²+x-10/x²-2x+1.tìm max B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
B=(x^2-6x+9)-8
B=(x-3)^2-8
Vì (x-3)^2\(\ge0\forall x\)
-> (x-3)-8\(\ge-8\forall x\)
Dấu = xảy ra<=> x-3=0<=>x=3
C=2x^2-10x+1
C=2(x^2-5x+6,25)-11,5
C= 2(x-2,5)^2-11,5
Vì 2(x-2,5)^2\(\ge0\forall x\)
->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)
Dấu = xẩy ra<=> x-2,5=0<=>x=2,5
Vậy Min C là -11,5 <=> x=2,5
D= x^2+10-25
D=(x^2+10+25)-50
D=(x+5)^2-50
Vì (x-5)^2 \(\ge0\forall x\)
-> (x-5)^2-50\(\ge-50\forall x\)
Dấu = xẩy ra <=> x-5=0<=>x=5
Vậy Min D là -50 <=>x=5
Tìm Max
B= 5x-x^2
B=-(x^2-5x+25/4)-25/4
B= -(x-5/2)^2-25/4
Vì -(x-5/2)^2\(\le0\forall x\)
-> -(x-5/2)^2-25/4\(\le\)-25/4
Dấu = xẩy ra <=> x-5/2=0<=>x=5/2
Vậy Max B là -25/4 <=> x=5/2
C=-x^2-6x+10
C=-(x^2+6x+9)+19
C= -(x+3)^2+19
Vì -(x+3)^2\(\le\)0
=> -(x+3)^2+19\(\le\)19
Dấu = xảy ra <=> x+3=0<=>x=-3
D= -2x^x+8x+12
D=-2(x^2-4x+4)+20
D=-2(x-2)^2 +20
Vì -2(x-2)^2\(\le\)0
=> -2(x-2)^2+20\(\le\)20
Dấu= xẩy ra<=> x-2=0<=>x=2
Vậy Max D là 20<=>x-2
a: ĐKXĐ: \(x\ne-1\)
b: \(B=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3-1}\)
\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{5x}{x^2-x+1}\)
ủng hộ mk nha mọi người