chung minh rang A= 1/22+1/3+.........1/1002 >3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tổng trên là A, ta có:
a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(< \frac{1}{1}-\frac{1}{2008}\)
\(< 1-\frac{1}{2008}\)
Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)
câu b đề sao đấy bạn
Ta biến đổi 1 tí nhé
\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)
\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)
\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)
Cộng vế với vế của (1), (2), (3) suy ra
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
\(\Leftrightarrow Dpcm\)
ta có :1+(1/2+1/2+........+1/32)
1+(1/2*3*4*5......*32)
=>1/2*3*4*....*32<1
vậy 1+1/2+1/3+1/4+........+1/32<3
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)
Mà \(\left(a^2+b^2\right)^2\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow VT=a^3+b^3\ge\dfrac{1}{4}=VP\)
Xảy ra khi \(a=b=\dfrac{1}{2}\)
Ta thấy : A > 0
Có :
2A = 1+1/2+1/2^2+.....+1/2^2016
A = 2A - A = (1+1/2+1/2^2+.....+1/2^2016) - (1/2+1/2^2+.....+1/2^2017) = 1 - 1/2^2017 < 1
=> ĐPCM
Tk mk nha
Ta có: 3A = 3^2 + 3^3 + 3^4 + 3^5 +...+ 3^101
A = 3 + 3^2 + 3^3 + 3^4 +...+ 3^100
=> 3A - A = 3^101 - 3
=> 2A = 3^101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
=> A = \(\frac{3^{101}-1}{2}-\frac{2}{2}=\left(3^{101}-1\right).\frac{1}{2}-1\)
=> A < B
Ta có:
8/9=1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9
Mà 1/9<1/2;1/9<1/3;...1/9<1/8;1/9=1/9
=>1/9+1/9+...+1/9<1/2+1/3+...+1/8+1/9
Vậy.......
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{9}\)
\(=\frac{8}{9}\)
Nên > \(\frac{8}{9}\)