K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

bình phương bđt cần chứng minh lên rồi AM-GM cho từng cặp 2 số

7 tháng 4 2017

Chỉ có thần tiên mới giúp được b. Cho a,b,c mà bảo chứng minh x,y,z :3

21 tháng 7 2023

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)

Từ (1) và (2)

\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx=0\)

20 tháng 10 2017

vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi

bài 1

\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)

\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)

Dấu bằng xảy ra khi \(a=b=c=1\)

26 tháng 4 2020

Bài 2 là chuyên Bình Thuận, 2016-2017

Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:

\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)

Cộng từng vế của 3 BĐT trên. ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)

Đẳng thức xảy ra khi x = y = z

23 tháng 12 2017

cảm ơn

NV
30 tháng 12 2021

\(x+\sqrt{3x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{\left(x+y\right)\left(z+x\right)}\ge x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}\)

\(=x+\sqrt{xz}+\sqrt{xy}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+zx}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế với vế ta có đpcm