Tìm x,y nguyên dương:
a)x/10-1/y=3/10
b)1/x+y/2=5/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
a)
\(\left(x+1\right)\left(y-2\right)=5\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng:
x+1 | 1 | -1 | 5 | -5 |
y-2 | 5 | -5 | 1 | -1 |
x | 0 | -2 | 4 | -6 |
y | 7 | -3 | 3 | 1 |
Vậy \(\left(x;y\right)=\left(0;7\right),\left(-2;-3\right),\left(4;3\right),\left(-6;1\right)\)
b)
\(\left(x-5\right)\left(y+4\right)=-7\\ \Rightarrow\left(x-5\right),\left(y+4\right)\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng:
x-5 | 1 | -1 | 7 | -7 |
y+4 | -7 | 7 | -1 | 1 |
x | 6 | 4 | 12 | -2 |
y | -11 | 3 | -5 | -3 |
Vậy \(\left(x;y\right)=\left(6;-11\right),\left(4;3\right),\left(12;-5\right),\left(-2;-3\right)\)
Ta có: \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}+\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1+2y}{8}\)
=> (1 + 2y)x = 40 = 1 . 40 = 2.20 = 5 . 8 = 4 . 10
Vì 1 + 2y là số lẽ nên => 1 + 2y \(\in\)1; 5;-1;-5
Lập bảng :
x | 8 | 10 | -8 | -10 |
1 + 2y | 5 | 1 | -5 | -1 |
y | 2 | 0 | -3 | -1 |
Vậy ...
b) Ta có: \(\frac{x}{5}+\frac{1}{10}=\frac{1}{y}\)
=> \(\frac{2x+1}{10}=\frac{1}{y}\)
=> (2x + 1).y = 10 = 1 . 10 = 2. 5
Vì 2x + 1 là số lẽ => 2x + 1 \(\in\){1; 5; -1; -5}
Lập bảng: tương tự câu a
c) Như câu b.