OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia ngay Cuộc thi "Đi tìm Đại sứ OLM" giải thưởng tới 10 triệu đồng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A= n^3+3n^2+2n
a) cmr A chia hết cho 3 với mọi n
b) tìm n thuộc N, n<10 để A chia hết cho 15
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)
cho A=n3+3n2+2n
cmr A chia hết cho 3 với mọi n
tìm n < 10 để n chia hết cho 15
Cho A = n^3 + 3n^2 + 2n
a/ CMR: A chia hết cho 3 với mọi số nguyên n
b/ Tìm n thuộc N* ; n>0 để A chia hết cho 15
Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
https://olm.vn/hoi-dap/detail/195347678157.html
a)Chứng minh rằng A chia hết cho 3 với mọi số nguyên n.
b) Tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15.
CHO A = n^3 + 3n^2 + 2n
a, Chứng minh rằng A chia hết cho 3 với mọi n là số nguyên
b, Tìm giá trị nguyên dương của n với n < 10 để A chia hết cho 15
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N) Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z Bài 13: m, n thuộc N sao cho 24m^4+1=n^2 CMR: mn chia hết cho 5 Bài 14: 17^19+19^17 chia hết cho 18 Bài 15: Cho A=1^3+2^3+3^3+...+100^3 B=1+2+3+...+100 CMR: A chia hết cho B
Cho A = n3+3n2+2n.
a. Chứng minh A chia hết cho 3 với mọi số nguyên n.
b. Tìm giá trị nguyên dương của n với n < 10 để A chia hết cho 15.
Khó nhờ!
Cho A=n3+3n2+2n
b)Tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15.
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)