K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

AB = CM (gt) DB = DC (D là trung điểm của BC) => ?ABD = ?MCD (2 cạnh góc vuông) => Mặt khác : (B, D, C thẳng hàng) => Hay : => A, D, M thẳng hàng ( góc bẹt) Nhận xét: Ở bài này chứng minh 3 điểm thẳng hàng bằng cách chứng minh cho góc tạo bởi 3 điểm đó là 180 độ.

 

24 tháng 3 2020

1. chứng minh góc ABC là góc bẹt 

2. chứng minh đoạn AB hoặc AC cùng song song vs 1 đoạn thẳng 

 chứng minh là đường cao nè 

chứng minh là góc bẹt nè

28 tháng 11 2016

xin lỗi bạn mình mệt quá từ nảy bấm muốn rụng hai cái tay luôn

28 tháng 11 2016

bấm có mấy chữ mà muốn rụng tay gì chứ 

28 tháng 2 2018

B A E M K C H

a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !

CMR : \(\Delta ABE=\Delta HBE\)

Xét \(\Delta ABE,\Delta HBE\) có :

\(BA=BH\left(gt\right)\)

\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )

\(BE:chung\)

=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)

b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)

Xét \(\Delta ABO,\Delta HBO\) có :

\(AB=BH\left(gt\right)\)

\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))

AO : Chung

=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)

Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)

=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)

=> \(BO\perp AH\)

Hay : \(BE\perp AH\)

c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)

Suy ra : \(EK=EC\) (2 cạnh tương ứng)

d) Xét \(\Delta ABC\) có :

BE là tia phân giác của \(\widehat{ABC}\) (1)

Xét \(\Delta KEM,\Delta CEM\) có :

\(EK=EC\left(cmt\right)\)

\(EM:chung\)

\(KM=CM\) (M là trung điểm của KC)

=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)

=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)

=> EM là tia phân giác của \(\widehat{KEC}\) (2)

Từ (1) và (2) => \(BE\equiv ME\)

=> B, E, M thẳng hàng

=> đpcm.

4 tháng 3 2018

góc BKE và góc BCE bằng nhau theo trường hợp gì vậy bạn

 

a: ΔABC cân tại A

mà AM là đường cao

nên AM là trung trực của BC(1)

b: DB=DC

nên D nằm trên trung trực của BC(2)

(1), (2) =>A,M,D thẳng hàng