Cho tam gia ABC cân tại A.Vẽ AH vuông góc BC.Biết AB=AC=13cm;BC=10cm
a)chứng minh tam giác AHB=tam giác AHC
b)Tính AH
c)Qua C ,vẽ đường thẳng vuông góc BC cắt AB tại E,chứng minh CE//AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{61}{900}\)\(\Leftrightarrow AH^2=\dfrac{900}{61}\)\(\Leftrightarrow AH=\dfrac{30\sqrt{61}}{61}\)
a. vì ABC cân tại A, AH | BC
=> AH là đường cao của ABC
=> AH cũng là đường trung trực của ABC
xét \(\Delta\)ABH và \(\Delta\)ACH có:
AB=AC(gt)
B=C(gt)
HB=HC(trung trực)
=> \(\Delta\text{ABH}=\Delta\text{ACH}\)(C.G.C)
=> BAH=HAC(2 góc tương ứng)
b. trong tam giác ABH có:
AB2=AH2+BH2(PI TA GO)
=> 202=62+BH2
=> 400=36+BH2
=> BH2=400-36
=> BH2=364
=> BH=\(\sqrt{364}\)
MÀ AH là trung trực => BH=CH
=> BC=BH+CH=\(\sqrt{364}+\sqrt{364}\) (SỐ HƠI LẺ)
a) Xét tam giác BAH vuông tại H và Tam giác ACH vuông tại H có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> TAm giác BAH = tam giác ACH ( c.h - c.g.v )
=> BAH = ACH ( hai góc tương ứng )
b)
Tam giác BAH vuông tại H , theo py ta go :
BH^2 + AH^2 = AB^2
=> BH^2 = AB^2 - AH^2
= 20^2 - 6^2
= 400 - 36
= 364
=> BH = căn 364
TAm giác HAB = tam giác HAC ( CMT)
=> HB = HC
=> HB + HC = 2 HB = 2. căn 364 = BC
=> BC = 2 căn 364
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
b, Xét tam giác CHI và tan giác CAH có
^AIH = ^CHA = 900
^C _ chung
Vậy tam giác CHI ~ tam giác CAH (g.g)
\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)
Bạn tự vẽ hình nhé.
a/ Xét tam giác AHB và tam giác AHC có:
AB = AC (vì tam giác ABC cân tại A)
góc ABC = góc ACB (vì tam giác ABC cân tại A)
AH: cạnh chung
=> tam giác AHB = tam giác AHC (c.g.c)
Note: Câu a còn có 2 cách khác nữa, cần inbox mình :)
b/ Ta có tam giác ABC cân tại A => AH vừa là đường cao vừa là trung tuyến
=> HB = HC = BC / 2 = 10 / 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
AH^2 + BH^2 = AB^2 (pytago)
AH^2 + 5^2 = 13^2 (Vì: 169 - 25 = 144)
=> AH^2 = 144
=> AH = \(\sqrt{144}\)= 12 (cm)
c/ Ta có:
AH vuông góc BC (gt)
CE vuông góc BC (gt)
=> CE // AH
a) Xét tam giác vuông AHB và tam giác vuông AHC có
AB=AC( vì tam giác ABC cân tại A)
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\) ( 2 cạnh góc vuông)
b) Có \(\Delta AHB=\Delta AHC\)
=>BH=HC
=>H là trung điểm của BC
=>BH=BC/2=10/2=5(cm)
Xét tam giác AHB vuông tại H có
\(AB^2=AH^2+BH^2\)
=>132=AH2+52
=>AH2=132-52=144
=>AH=12
Vậy AH=12 cm)
Có \(AH⊥BC,CE⊥BC\)
=>CE//AH( quan hệ giữa tính vuông góc và song song)