Giair bất phương trình
\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{1-x}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\left(x\ne1;x\ne-2\right)\)
\(< =>\dfrac{-3}{x-1}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)
\(< =>\dfrac{-3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{2\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)
suy ra
`-3(x+2)-2(x-1)=x+8`
`<=>-3x-6-2x+2=x+8`
`<=>-3x-2x-x=8+6-2`
`<=>-6x=12`
`<=>x=-2(ktmđk)`
Vậy phương trình vô nghiệm
=>-3(x+2)-2x+2=x+8
=>-3x-6-2x+2=x+8
=>-5x-4=x+8
=>-6x=12
=>x=-2(loại)
ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)
- Với \(x< -1\Rightarrow VT< 0< 2\sqrt{2}\Rightarrow\) ptvn
- Với \(x>1\), bình phương 2 vế:
\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=8\)
\(\Leftrightarrow\dfrac{x^4}{x^2-1}+2\sqrt{\dfrac{x^4}{x^2-1}}-8=0\)
Đặt \(\sqrt{\dfrac{x^4}{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^4}{x^2-1}=4\Rightarrow x^4-4x^2+4=0\)
\(\Rightarrow x^2=2\Rightarrow x=\sqrt{2}\)
Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)
Suy ra: \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)
a/ \(\dfrac{3x^2+7x-10}{x}=0\)
\(< =>3x^2+7x-10=0\)
\(< =>3x^2+10x-3x-10=0\)
\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)
\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)
\(< =>\left(3x+10\right)\left(x-1\right)=0\)
\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)
Vậy tập nghiệm của .....
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
ĐKXĐ: \(x\notin\left\{0;2\right\}\)
Ta có: \(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\)
\(\Leftrightarrow\dfrac{x^2}{x\left(x-2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
\(\Leftrightarrow\dfrac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
\(\Leftrightarrow\dfrac{4x-4}{x\left(x-2\right)}>0\)
Trường hợp 1:
\(\left\{{}\begin{matrix}4x-4>0\\x\left(x-2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x>4\\\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x>2\)
Kết hợp ĐKXĐ, ta được: x>2
Trường hợp 2:
\(\left\{{}\begin{matrix}4x-4< 0\\x\left(x-2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x< 4\\0< x< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\0< x< 2\end{matrix}\right.\Leftrightarrow0< x< 1\)
Kết hợp ĐKXĐ, ta được: 0<x<1
Vậy: S={x|\(\left[{}\begin{matrix}x>2\\0< x< 1\end{matrix}\right.\)}