Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ AD là đường kính của (O), AH vuông góc với BC tại H, BE vuông góc với AD tại E. Gọi G là giao điểm của AH với (O).
a) Chứng minh tứ giác ABHE nội tiếp và GD ∥ BC;
b) Gọi N là giao điểm giữa HE và AC. Chứng minh tam giác AHN vuông tại N;
c) Tia phân giác của góc BAC cắt đường tròn (O) tại F. Gọi M là giao điểm của OF và BC, K là trung điểm của AB, I là giao điểm của KM và HE. Chứng minh rằng AB·EI = AE·EM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
góc AGD=1/2*180=90 độ
=>GD vuông góc AH
=>GD//BC
b: ABHE nội tiếp
=>góc EHC=góc BAD
mà góc BAD=góc DCB
nên góc EHC=góc DCB
=>EH//CD
góc ACD=1/2*180=90 độ
=>AC vuông góc CD
=>EH vuông góc AC tại N
=>góc ANH=90 độ
a) Xét tứ giác ABHE có
\(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)
\(\widehat{AHB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE
=góc ABE+90 độ-góc HAB
=90 độ
=>HE vuông góc AC
=>HE//CD
a: góc AEB=góc AHB=90 độ
=>ABHE nội tiếp
b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC
=>HE//CD
a: Vì góc AEB=góc AHB=90 độ
=>AHBE nội tiếp
góc AGD=1/2*180=90 độ
=>AG vuông góc GD
=>GD//BC
b:
Xét ΔAHB vuông tại H và ΔACD vuông tạiC có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
=>góc BAH=góc DAC
góc NAH+góc NHA
=góc ABE+góc BAE=90 độ
=>ΔAHN vuông tại N
giúp câu c nha mn