cho tam giác ABC vuông tại A,AB=9cm,AC=12cm. trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE (a) so sánh B,C? (b) vì sao tam giác ABC=tam giác AEC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
1: AC=12cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
2: Xét ΔABC vuông tại A và ΔAEC vuông tại A có
AB=AE
AC chung
Do đó: ΔABC=ΔAEC
Suy ra: CB=CE
Cho mình xin câu trả lời đúng nhất ạ (bạn nào có thể về cho mọi hình đc ko??)
a) chứng minh \(\Delta ABC=\Delta ADC\)
xét 2 tam giác vuông ABC và ADC:
có AC: cạnh chung
AD=AB (gia thiết)
=> \(\Delta ABC=\Delta ADC\) (2cgv)
b) chứng minh DC//BE
xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE
c) chứng minh BE = 2AI
ta có BEDC là hình bình hành => BE=DC
lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)
chúc em học tốt
Cậu tự vẽ hình nhé.
a, Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:
AB = AD(gt)
AC chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)
b, Ta có \(DB\perp EC\) tại \(A\)
mà \(DA=AB\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )
\(\Rightarrow DC//BE\) ( tính chất hình thoi )
c, Xét \(\Delta DAC\) vuông tại A có:
I là trung điểm của DC
\(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)
\(\Rightarrow2AI=DC\)
Lại có DC = EB ( DCBE là hình thoi )
\(\Rightarrow2AI=BE\)
a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
c: Xét ΔCDB có
BE,CA là trung tuyến
BE cắt CA tại I
=>I là trọng tâm
=>DI đi qua trung điểm của BC
a) \(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lí Py-ta-go)
\(BC^2=9^2+12^2\)
\(BC^2=81+144\)
\(BC=225\)(cm) (BC > 0)
b) \(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow AC⊥AB\)(đ/n)
mà AD là tia đối của tia AB (gt)
\(\Rightarrow AC⊥BD\)
\(\Rightarrow\)AC là đường cao của \(\Delta BCD\)(đ/n)
mà AC là trung tuyến BD (A là trung điểm BD)
\(\Rightarrow\)\(\Delta BCD\)cân tại C (dhnb)
c) \(\Delta BCD\)có:
BE là trung tuyến CD (E là trung điểm CD)
AC là trung tuyến BD (cmb)
BE cắt AC ở I (gt)
\(\Rightarrow\)I là trọng tâm \(\Delta BCD\)(đ/n)
\(\Rightarrow\)DI là trung tuyến BC (đ/n)
\(\Rightarrow\)DI đi qua trung điểm cạnh BC (đ/n)
a: AB<AC
=>góc C<góc B
b: Xét ΔCAB vuông tại A và ΔCAE vuông tại A có
CA chung
AB=AE
=>ΔCAB=ΔCAE