K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Do S = \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}\)

\(\Rightarrow\)S = \(\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(\Rightarrow\)S=(1+1+1+...+1) - \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(\Rightarrow\)S=49-\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Dễ thấy:\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)không phải là số tự nhiên

\(\Rightarrow\)S\(\notin N\)

20 tháng 3 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{5000}\)

\(S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{5000}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{4}++\frac{1}{9}+\frac{1}{16}+...+\frac{1}{5000}\right)\)

\(S=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)< 49\)\(\left(1\right)\)

Lại có : 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow\)\(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>-1\)

\(\Rightarrow\)\(S=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>49-1=48\)\(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(48< S< 49\)

Vậy S không là số tự nhiên 

Chúc bạn học tốt ~ 

20 tháng 3 2018

\(S=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\left(1\right)\)

Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)>-1\)

\(\Rightarrow A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)>49-1=48\)(2)

Từ (1) và (2) => 48<A<49 

Vậy S không phải là stn

9 tháng 4 2020

So thú bi cháy con gì ra đau tiên:

17 tháng 6 2015

B  \(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{50^2-1}{50^2}\)

    \(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

mà    \(0<\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)<1\)cũng như \(\notin Z\)

Vậy B không phải là số nguyên ^_^

22 tháng 2 2016

\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)

=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)

=\(\frac{2\cdot51}{50\cdot3}\)

=\(\frac{17}{25}\)

Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]

26 tháng 5 2016

Đề bài yêu cầu làm j z bn