cho số có ba chữ số có hàng đơn vị là 2.Nếu xóa đi chữ số 2 đó đi thì được số mới kém số đã cho 137 đơn vị.Tìm số đã cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab2 = ab + 137
ab x 10 + 2 = ab + 137
ab x 10 - ab = 137 - 2
ab x (10 - 1) = 135
ab x 9 = 135
ab = 135 : 9
ab = 15
=> ab2 = 152
Vậy số cần tìm là 152
ab2 là số có 3 chữ số đã cho
nếu xóa đi chữ số 2 thì còn ab
Theo đề bài ta có ab2 - ab = 137
Đặt phép tính ta suy ra ab = 12 và số có 3 chữ số là 152
Gọi số cần tìm là ab2
Theo đề bài ta có : ab2 - ab = 137
=> 10ab + 2 - ab = 137
=> 9ab + 2 = 137
=> 9ab = 135
=> ab = 15
=> 10ab + 2 = ab2 = 15 . 10 + 2 = 152
Vậy số cần tìm là 152
Gọi số cần tìm là : AB2
Theo đề bài ta có : AB2 - AB = 137
\(\Rightarrow\)10ab + 2 -ab = 137
\(\Rightarrow\)9ab + 2 = 137
\(\Rightarrow\)9ab = 135
\(\Rightarrow\)ab = 15
\(\Rightarrow\)10ab + 2 = ab2 = 15 . 10 + 2 = 152
Vậy số cần tìm là : 152
Nếu xóa số ở hàng đơn vị thì ta được số mới bằng 1/10 số đã cho.
Số mới là:
549 : (10 - 1) = 61
Số cần tìm là:
61 x 10 = 610
Đáp số:610
Lời giải:
Gọi số cần tìm là $\overline{abcd}$ với $a,b,c,d$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{abcd}-\overline{abc}=1821$
$\overline{abc}\times 10+d-\overline{abc}=1821$
$\overline{abc}\times 9+d=1821$
Vì $1821$ chia 9 dư 3, $\overline{abc}\times 9$ chia hết cho 9 nên $d$ chia 9 dư 3.
Mà $d$ là số tự nhiên có 1 chữ số nên $d=3$.
$\overline{abc}\times 9+3=1821$
$\overline{abc}\times 9=1821-3=1818$
$\overline{abc}=1818:9=202$
Vậy số cần tìm là $2023$
nếu xóa chữ số 0 thì số đó giảm đi 10 lần
gọi số mới là x , ta có : x*10-x=225
x*(10-1)=225
x*9=225
x=225/9
x=25
vậy số cần tìm là 25*10=250
đáp số : 250
1,
gọi ab là số cần tìm (a khác 0)
gọi a0b là số ab sau khi thêm 0 vào chính giữa
gọi 1a0b là số a0b sau khi thêm 1 vào bên trái
ta có:
ab x 10=a0b
(ax10+bx1)x10=a0b
ax100+bx10=ax100+bx1
bx10=b(cùng trừ 2 vế cho a*100)
vì b x10=b nên b chỉ có thể là 0
vì b=0 nên ab=a0 và a0b=a00
ta lại có : a00x 3=1a00
a00 x 3=1000+a00
a00 x 2=1000(cùng trừ hai vế cho a00)
a00=1000:2
a=5
Vậy ab = 50
Lời giải:
Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên, $a\neq 0$, $0\leq a,b,c\leq 9$
Theo bài ra ta có:
$\overline{abc}-\overline{ab}=771$
$\overline{ab}\times 10+c-\overline{ab}=771$
$\overline{ab}\times 9+c=771$
$c=771-9\times \overline{ab}=3\times (257-\overline{ab})$ nên $c$ chia hết cho $3$ nên $c=0,3,6,9$
Thử các giá trị trên ta có $\overline{ab}=85, c=6$
Vậy số cần tìm là $856$
Gọi số đó là : ab2 . Ta có :
ab2 = ab + 137
ab x 10 + 2 = ab + 137
ab x 9 + 2 = 137
ab x 9 = 137 - 2
ab x 9 = 135
ab = 135 : 9
ab = 15
Vậy số cần tìm là :152
Where are you?