K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(A=\frac{x^2-2x+2011}{x^2}=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}\)

Đặt \(t=\frac{1}{x}\) ta có: \(A=2011t^2-2t+1\)

\(\Leftrightarrow A=2011t^2-2t+\frac{1}{2011}+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t^2-\frac{2t}{2011}+\frac{1}{2011^2}\right)+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t-\frac{1}{2011}\right)^2+\frac{2010}{2011}\ge\frac{2010}{2011}\)

Đẳng thức xảy ra khi \(t=\frac{1}{2011}\Leftrightarrow x=2011\)

1 tháng 5 2017

Ta có:\(\frac{x^2-2x+2011}{x^2}\ge\frac{2010}{2011}\Rightarrow2011\left(x^2-2x+2011\right)\ge2010x^2\)

\(\Rightarrow2011x^2-2x2011+2011^2\ge2010^2\)

\(\Rightarrow2011x^2-2x2011+2011-2010x^2\ge0\)

\(\Rightarrow x^2-2x2011+2011^2\ge0\)

\(\Rightarrow\left(x-2011\right)^2\ge0\)(đúng)

\(\Rightarrow\)đpcm

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Leftrightarrow x=2007\)

17 tháng 3 2020

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Rightarrow x=2007\)

12 tháng 3 2021

\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.

10 tháng 2 2021

Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)

\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(P) = 2015 khi x = 1

Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)

\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)

\(=2015+\left(\frac{x-1}{x}\right)^2\)

Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow P\ge2015\forall x\ne0\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)

\(\Leftrightarrow\frac{x-1}{x}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(MinP=2015\Leftrightarrow x=1\)

16 tháng 8 2019

\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)

Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá

5 tháng 7 2020

Đành chơi trò như này vậy:

\(A=\frac{x^2-3x+2019}{x^2}=1-\frac{3}{x}+\frac{2019}{x^2}\)

Đặt \(a=\frac{1}{x}\)

Khi đó:\(A=2019a^2-3a+1=2019\left(a^2-2\cdot\frac{3}{4038}\cdot a+\frac{9}{4038^2}\right)+\frac{2689}{2692}\)

\(=2019\left(a-\frac{3}{4038}\right)^2+\frac{2689}{2692}\ge\frac{2689}{2692}\)

Đẳng thức xảy ra tại a=1/1346