Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\left(a+1\right)^2+b^2+1=a^2+2a+1+b^2+1=\left(a^2+b^2\right)+2a+2\ge2\left(ab+a+1\right)\)
\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\)(1)
\(\left(b+1\right)^2+c^2+1=b^2+2b+1+c^2+1=\left(b^2+c^2\right)+2b+2\ge2\left(bc+b+1\right)\)
\(\Rightarrow\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)}\)(2)
\(\left(c+1\right)^2+a^2+1=c^2+2c+1+a^2+1=\left(c^2+a^2\right)+2c+2\ge2\left(ca+c+1\right)\)
\(\Rightarrow\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)(3)
Cộng vế theo vế của (1) ; (2) ; (3) ta được:
\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=b=1\)
Vì \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=3 ==> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)=9= \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
ta có \(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)= \(\frac{2\left(a+b+c\right)}{abc}\)=2
==> đpcm
Đặt \(\hept{\begin{cases}a=\frac{x}{y}\\b=\frac{y}{z}\\c=\frac{z}{x}\end{cases}}\) Ta có: \(A=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}=\frac{1}{\frac{x}{y}+2}+\frac{1}{\frac{y}{z}+2}+\frac{1}{\frac{z}{x}+2}\)
\(=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\)
Cần cm \(A\le1\Leftrightarrow2A\le2\)
\(\Leftrightarrow\frac{2y}{x+2y}+\frac{2z}{y+2z}+\frac{2x}{z+2x}\le2\)
\(\Leftrightarrow\left(1-\frac{2y}{x+2y}\right)+\left(1-\frac{2z}{y+2z}\right)+\left(1-\frac{2x}{z+2x}\right)\ge1\)
\(\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)
\(\Leftrightarrow\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\ge1\)
bđt này đúng theo cauchy-schwarz. dấu bằng xảy ra khi a=b=c=1
Ta có bổ đề :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)
Thật vậy: \(BĐT\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)(luôn đúng vì a/b+b/a>=2)
mà a+b+c=1 nên ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
còn bài 2 phần đằng sau là j ạ>???
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)
\(\Leftrightarrow\frac{2.\left(a+b+c\right)}{abc}=2\)
\(\Leftrightarrow\frac{a+b+c}{abc}=1\)
\(\Leftrightarrow a+b+c=abc\left(dpcm\right)\)