Chứng minh phương trình \(3x^4-3x^3-5x^2+2x+2=0\) có ít nhất 2 nghiệm nằm trong khoảng (-1;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt f(x) = x5 – 3x4 + 5x – 2, ta có:
⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒⎧⎪⎨⎪⎩f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3){f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒{f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3)
_ Hàm số f(x) là hàm số đa thức liên tục trên R.
⇒ Hàm số f(x) liên tục trên các đoạn [0, 1], [1, 2], [2, 3] (4)
Từ (1), (2), (3) và (4) ⇒ phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất một nghiệm trên mỗi khoảng (0, 1), (1, 2), (2, 3).
Vậy phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất ba nghiệm trên khoảng (-2, 5) (đpcm)
Đặt \(f\left(x\right)=x^5-3x^4+5x-2\).
\(f\left(-2\right)=\left(-2\right)^5-3.\left(-2\right)^4+5.\left(-2\right)-2=-56< 0\).
\(f\left(0\right)=-2< 0\).
\(f\left(1\right)=1^5-3.1^4+5.1-2=1>0\).
\(f\left(2\right)=2^5-3.2^4+5.2-2=-8< 0\).
\(f\left(3\right)=3^5-3.3^4+5.3-2=13>0\).
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right).f\left(1\right)< 0\\f\left(1\right).f\left(2\right)< 0\\f\left(2\right).f\left(3\right)< 0\end{matrix}\right.\).
Hàm số đã cho là hàm đa thức nên liên tục trên R.
Suy ra hàm số liên tục trên các đoạn: \(\left[0;1\right];\left[1;2\right];\left[2;3\right]\) nên phương trình \(x^5-3x^4+5x-2=0\) có ít nhất một nghiệm trên các khoảng \(\left(0;1\right);\left(1;2\right);\left(2;3\right)\).
Chứng minh rằng phương trình x 5 – 3 x 4 + 5 x – 2 = 0 có ít nhất ba nghiệm nằm trong khoảng - 2 ; 5
Đặt f(x) = x5 – 3x4 + 5x – 2
f(x) là hàm đa thức nên liên tục trên R.
Ta có: f(0) = –2 < 0
f(1) = 1 > 0
f(2) = -8 < 0
f(3) = 13 > 0
⇒ f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0
⇒ Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)
⇒ f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).
Ta có:
\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
Mà:
\(x^2+1>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt vô nghiệm
a: Đặt f(x)=x3+x-1
\(f\left(0\right)=0^3+0-1=-1\)
\(f\left(1\right)=1^3+1-1=1\)
Vì \(f\left(0\right)\cdot f\left(1\right)=-1< 0\)
nên f(x)=0 có ít nhất một nghiệm thuộc đoạn (-1;0)
=>Phương trình \(x^3+x-1=0\) có nghiệm
b: Đặt \(A\left(x\right)=4x^4+2x^2-x-3\)
\(A\left(-0,8\right)=4\cdot\left(-0,8\right)^4+2\cdot\left(-0,8\right)^2-\left(-0,8\right)-3=0,7184\)
\(A\left(-0,6\right)=4\cdot\left(-0,6\right)^4+2\cdot\left(-0,6\right)^2-\left(-0,6\right)-3=-1,161\)
\(A\left(0,8\right)=4\cdot0,8^4+2\cdot0,8^2-0,8-3=-0,881\)
\(A\left(1\right)=4\cdot1^4+2\cdot1^2-1-3=2\)
Vì \(A\left(-0,8\right)\cdot A\left(-0,6\right)< 0\)
nên phương trình A(x)=0 có ít nhất 1 nghiệm thuộc đoạn (-1;1)
Vì A(0,8)*A(1)<0
nên phương trình A(x)=0 có ít nhất 1 nghiệm thuộc đoạn (0,8;1)
=>phương trình \(4x^4+2x^2-x-3=0\) có ít nhất 2 nghiệm thuộc đoạn (-1;1)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Đặt \(f\left(x\right)=3x^4-3x^3-5x^2+2x+2\)
Hiển nhiên \(f\left(x\right)\) liên tục trên R cũng như mọi khoảng con của nó
\(f\left(-1\right)=1>0\)
\(f\left(-\dfrac{3}{4}\right)=-\dfrac{25}{256}< 0\)
\(f\left(0\right)=2>0\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right).f\left(-\dfrac{3}{4}\right)< 0\\f\left(-\dfrac{3}{4}\right).f\left(0\right)< 0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm thuộc (-1;0) nên có ít nhất 2 nghiệm thuộc (-1;1)