Cho tam giac ABC vuông tại A có AB<AC, đường cao AH. Trên cạnh AC lấy điểm E / AE=AB.EI vuông góc AH tại I. Tia phân giác góc BAC giao BE ở M. CMR
1) tam giác ABM vuông cân
2 IE=AH
3) góc AHM =45 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
Bài này ngoài dùng tỉ số lượng giác lớp 9 rồi tới pytago thì không biết dùng gì nữa :(
Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD(gt)
Do đó: ΔCHA=ΔCHD(hai cạnh góc vuông)
Suy ra: CA=CD(hai cạnh tương ứng)
Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
HA=HD(gt)
Do đó: ΔBHA=ΔBHD(Hai cạnh góc vuông)
Suy ra: BA=BD(hai cạnh tương ứng)
Xét ΔCAB và ΔCDB có
CA=CD(cmt)
CB chung
BA=BD(cmt)
Do đó: ΔCAB=ΔCDB(c-c-c)
Suy ra: \(\widehat{CAB}=\widehat{CDB}\)(hai góc tương ứng)
hay \(\widehat{CDB}=90^0\)(đpcm)
Xét tam giác ACH và tam giác DCH có:
H=90o(gt)
CH chung(gt)
AH=HD(gt)
=> 2 tam giác = nhau(2 cạnh gv)
=> C1=C2 (2 góc tương ứng)
=> CA=CD( 2 cạnh tương ứng)
Xét tam giác ACB và tam giác CDB có:
C1=C2(cmt)
CA=CD (cmt)
CB chung(gt)
=> 2 tam giác= nhau( cgc)
=> A=D=90o(2 cạnh tương ứng)
tick mk nhé
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
a: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
ΔBAC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=9^2+12^2=225\)
=>BC=15(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>BH=5,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=7,2(cm)
ΔOAD cân tại O
mà OH là đường cao
nên H là trung điểm của AD
=>AD=2*HA=14,4(cm)
b: Xét ΔBAH vuông tại H có \(sinBAH=\dfrac{BH}{AB}=\dfrac{5.4}{9}=\dfrac{3}{5}\)
=>\(\widehat{BAH}\simeq37^0\)
bài này pk áp dụng định lí PYTAGO j đó , lớp mk chưa hc nên bn kham khảo hình
Áp dụng định lí Py-ta-go vào tam giác vuông ABC:
Ta có: BC2 = AB2 + AC2
22 = AB2 +AC2
1) Do \(\Delta BAE\)có \(AB=AE\Rightarrow\Delta BAE\)cân vuông tại A
Mà \(AM\)là đường phân giác của \(\Delta BAE\)(hay\(\Delta ABC\))
\(\Rightarrow AM\)đồng thời là đường cao của \(\Delta BAE\Rightarrow\widehat{AMB}=\widehat{AME}=90^0\)
Ta có: \(\widehat{BAM}=\widehat{EAM}=\frac{\widehat{BAE}}{2}=45^0\left(1\right)\).Mà \(\Delta BAE\)vuông cân tại A\(\Rightarrow\widehat{ABM}=\widehat{AEM}=\frac{180^0-\widehat{BAE}}{2}=45^0\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\Delta ABM\)vuông cân (đpcm)
2) Vì \(\Delta ABC\)có \(\widehat{BAC}=90^0\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=90^0\left(3\right)\)
Vì H là đường cao của \(\Delta ABC\Rightarrow\widehat{AHC}=90^0\Rightarrow\widehat{HAC}+\widehat{ACH}=180^0-\widehat{AHC}=90^0\)(Hay \(\widehat{HAC}+\widehat{ACB}=90^0\))\(\left(4\right)\)
Từ (3) và (4)\(\Rightarrow\widehat{ABC}=\widehat{HAC}=90^0-\widehat{ACB}\)(Hay \(\widehat{ABH}=\widehat{IAE}\))
Xét \(\Delta ABH\)và\(\Delta EAI\)có:\(\hept{\begin{cases}\widehat{AHB}=\widehat{EIA}=90^0\\AB=AE\\\widehat{ABH}=\widehat{EAI}\end{cases}}\Rightarrow\Delta ABH=\Delta EAI\)(cạnh huyền góc nhọn)
\(\Rightarrow IE=AH\)(Đpcm)