K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

A B C H I M E

1) Do \(\Delta BAE\)có \(AB=AE\Rightarrow\Delta BAE\)cân vuông tại A

Mà \(AM\)là đường phân giác của \(\Delta BAE\)(hay\(\Delta ABC\))

\(\Rightarrow AM\)đồng thời là đường cao của \(\Delta BAE\Rightarrow\widehat{AMB}=\widehat{AME}=90^0\)

Ta có: \(\widehat{BAM}=\widehat{EAM}=\frac{\widehat{BAE}}{2}=45^0\left(1\right)\).Mà \(\Delta BAE\)vuông cân tại A\(\Rightarrow\widehat{ABM}=\widehat{AEM}=\frac{180^0-\widehat{BAE}}{2}=45^0\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\Delta ABM\)vuông cân (đpcm)

2) Vì \(\Delta ABC\)có \(\widehat{BAC}=90^0\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=90^0\left(3\right)\)

Vì H là đường cao của \(\Delta ABC\Rightarrow\widehat{AHC}=90^0\Rightarrow\widehat{HAC}+\widehat{ACH}=180^0-\widehat{AHC}=90^0\)(Hay \(\widehat{HAC}+\widehat{ACB}=90^0\))\(\left(4\right)\)

Từ (3) và (4)\(\Rightarrow\widehat{ABC}=\widehat{HAC}=90^0-\widehat{ACB}\)(Hay \(\widehat{ABH}=\widehat{IAE}\))

Xét \(\Delta ABH\)\(\Delta EAI\)có:\(\hept{\begin{cases}\widehat{AHB}=\widehat{EIA}=90^0\\AB=AE\\\widehat{ABH}=\widehat{EAI}\end{cases}}\Rightarrow\Delta ABH=\Delta EAI\)(cạnh huyền góc nhọn)

\(\Rightarrow IE=AH\)(Đpcm)

                  

8 tháng 1 2016

Ta có: AB = 15cm ; AC = 20cm

=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)

BC = 25 => BC2 = 252 = 625 (cm) (2)

Từ (1) và (2) => AB2 + AC2 = BC2

Vậy tam giác ABC vuông tại A (đpcm).

8 tháng 1 2016

ta có: AB = 15cm ; AC = 20cm

=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)

BC = 25 => BC2 = 252 = 625 (cm) (2)

Từ (1) và (2) => AB2 + AC2 = BC2

Vậy tam giác ABC vuông tại A (đpcm).

13 tháng 2 2017

Bài này ngoài dùng tỉ số lượng giác lớp 9 rồi tới pytago thì không biết dùng gì nữa :(

Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD(gt)

Do đó: ΔCHA=ΔCHD(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

HA=HD(gt)

Do đó: ΔBHA=ΔBHD(Hai cạnh góc vuông)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔCAB và ΔCDB có 

CA=CD(cmt)

CB chung

BA=BD(cmt)

Do đó: ΔCAB=ΔCDB(c-c-c)

Suy ra: \(\widehat{CAB}=\widehat{CDB}\)(hai góc tương ứng)

hay \(\widehat{CDB}=90^0\)(đpcm)

11 tháng 7 2021

Xét tam giác ACH và tam giác DCH có:

H=90o(gt)

CH chung(gt)

AH=HD(gt)

=> 2 tam giác = nhau(2 cạnh gv)

=> C1=C2 (2 góc tương ứng)

=> CA=CD( 2 cạnh tương ứng)

Xét tam giác ACB và tam giác CDB có:

C1=C2(cmt)

CA=CD (cmt)

CB chung(gt)

=> 2 tam giác= nhau( cgc)

=> A=D=90o(2 cạnh tương ứng)

tick mk nhé

20 tháng 2 2022

minh dang can gap

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)

a: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

ΔBAC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=9^2+12^2=225\)

=>BC=15(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>BH=5,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot15=9\cdot12=108\)

=>AH=7,2(cm)

ΔOAD cân tại O

mà OH là đường cao

nên H là trung điểm của AD

=>AD=2*HA=14,4(cm)

b: Xét ΔBAH vuông tại H có \(sinBAH=\dfrac{BH}{AB}=\dfrac{5.4}{9}=\dfrac{3}{5}\)

=>\(\widehat{BAH}\simeq37^0\)

Ôn tập cuối năm phần hình học

bài này pk áp dụng định lí PYTAGO j đó , lớp mk chưa hc nên bn kham khảo hình 

Áp dụng định lí Py-ta-go vào tam giác vuông ABC:

Ta có: BC= AB+ AC2

          22   = AB2 +AC2

Xin lỗi mình nhầm