K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

\(A=1-\frac{1}{2^2}-...-\frac{1}{2010^2}\)

\(=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

Ta có: \(A=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)\(>\)\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=1-\left(1-\frac{1}{2010}\right)=1-1+\frac{1}{2010}=\frac{1}{2010}\)

26 tháng 1 2017

cảm ơn bn >.<!

bài bn vik thiếu nhưng mik hiểu nên vẫn tick

28 tháng 10 2016

Thôi, cho phép mình góp ý bài mình đã làm bằng cách đơn giản hơn nha ^^.

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có:

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

\(=A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow A< 1-\frac{1}{2010}\)

\(\Rightarrow A< 1\)

\(\Rightarrow A< \frac{3}{4}\)

28 tháng 10 2016

Có: \(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\);...;\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=1-\frac{1}{2010}=\frac{2009}{2010}\)\(\frac{2009}{2010}>\frac{3}{4}\) -> Sai đề

 

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010

13 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)

\(A=\frac{1}{2011}\)

 

13 tháng 9 2016

dunt

28 tháng 6 2015

A=1-(1/2^2+1/3^2+...+1/2010^2)

A=1-(1/2*2+1/3*3+...+1/2010*2010)>1-(1/2*3+1/3*4+...+1/2010*2011)

A>1-(1/2-1/3+1/3-1/4+...+1/2010-1/2011)

A>1-(1/2-1/2011)=2013/4022>1/2010

=>A>1/2010

Sai thì em xin lỗi nhé

 

1 tháng 10 2016

Xét với n là số tự nhiên không nhỏ hơn 1 , ta có 

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng điều trên : 

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2009}}< \)

\(< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\right)=2\left(1-\frac{1}{\sqrt{2010}}\right)< \)

\(< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)