Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}.\) CMR \(A< \frac{3}{4}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2^2}-...-\frac{1}{2010^2}\)
\(=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
Ta có: \(A=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)\(>\)\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=1-\left(1-\frac{1}{2010}\right)=1-1+\frac{1}{2010}=\frac{1}{2010}\)
cảm ơn bn >.<!
bài bn vik thiếu nhưng mik hiểu nên vẫn tick
Thôi, cho phép mình góp ý bài mình đã làm bằng cách đơn giản hơn nha ^^.
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có:
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(=A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow A< 1-\frac{1}{2010}\)
\(\Rightarrow A< 1\)
\(\Rightarrow A< \frac{3}{4}\)
Có: \(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\);...;\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=1-\frac{1}{2010}=\frac{2009}{2010}\)Mà \(\frac{2009}{2010}>\frac{3}{4}\) -> Sai đề
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)
\(A=\frac{1}{2011}\)
A=1-(1/2^2+1/3^2+...+1/2010^2)
A=1-(1/2*2+1/3*3+...+1/2010*2010)>1-(1/2*3+1/3*4+...+1/2010*2011)
A>1-(1/2-1/3+1/3-1/4+...+1/2010-1/2011)
A>1-(1/2-1/2011)=2013/4022>1/2010
=>A>1/2010
Sai thì em xin lỗi nhé
Xét với n là số tự nhiên không nhỏ hơn 1 , ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng điều trên :
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2009}}< \)
\(< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\right)=2\left(1-\frac{1}{\sqrt{2010}}\right)< \)
\(< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)