K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xet ΔMAB co MD là phân giác

nen AD/DB=AM/MB=AM/MC

Xét ΔMCA có ME là phân giác

nên AE/EC=AM/MC=AD/DB

=>DE//BC

2: Xét ΔABM có DG//BM

nên DG/BM=AG/AM

Xét ΔACM có EG//MC

nên EG/MC=AG/AM

=>DG/BM=EG/MC

mà BM=MC

nên DG=EG

=>G là trung điểm của DE

Để G là trung điểm của AM thì ADME là hình bình hành

=>DM//AC

=>D là trung điểm của AB

=>E là trung điểm của BC

=>AM/MB=AD/DB=1

=>AM=1/2BC

=>góc BAC=90 độ

10 tháng 4 2023

cảm ơn ạ

 

27 tháng 8 2021

dễ

 

27 tháng 8 2021

dễ thì lm đi!

7 tháng 4 2019

Vì MD và ME lần lượt là phân giác của A M B ^ , A M C ^ nên  D A D B = M A M B , E A E C = M A M C

Mà MB = MC nên D A D B = E A E C  => DE // BC (định lí Talet đảo)

Vì DE // BC nên D I B M = A I A M = I E M C  (hệ quả định lí Talet) mà BM = MC nên DI = IE.

Nên cả A, B đều đúng.

Đáp án: D

1: Xét ΔAMB có MD là phân giác

nên AM/MB=AD/DB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AM/MC=AE/EC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

1: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC cso ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1)và (2) suy ra AD/DB=AE/EC
hay DE//BC

NV
22 tháng 3 2023

Áp dụng định lý phân giác cho tam giác ABM:

\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\) (1)

Áp dụng định lý phân giác cho tam giác ACM:

\(\dfrac{AM}{CM}=\dfrac{AE}{CE}\) (2)

Mà AM là trung tuyến \(\Rightarrow BM=CM\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{CE}\Rightarrow\dfrac{AD}{AD+BD}=\dfrac{AE}{AE+CE}\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\Rightarrow DE||BC\) (định lý talet đảo)

30 tháng 11 2017

Vì DI = IE (cmt) nên MI là đường trung tuyến của tam giác MDE.

ΔMDE vuông (vì MD, ME là tia phân giác của góc kề bù) nên MI = DI = IE

Đặt DI = MI = x, ta có D I B M = A I A M (cmt) nên  x 15 = 10 − x 10

Từ đó x = 6 suy ra DE = 12cm

Đáp án: D

21 tháng 4 2017

Giải bài 17 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

9 tháng 7 2021

cho mk hỏi là tại sao MB=MC mà lại =>\(\dfrac{AM}{BM}=\dfrac{AM}{MC}\)dựa vào t/c j ạ