K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 5 2021

ta có 

\(x^4+1\ge2x^2\text{ nên }x^4+x^2+1\ge3x^2\)

Nên \(A=\frac{x^2}{x^4+x^2+1}\le\frac{1}{3}\)Vậy GTLN A =1/3

GTNN cua A thì do \(\hept{\begin{cases}x^2\ge0\\x^4+x^2+1>0\end{cases}\Rightarrow A\ge0}\) nên GTNN A=0

10 tháng 12 2018

\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)\(ĐK:x\ne2;x\ne0\))

\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)

\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)

b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy GTNN của E là 2 khi x = 1

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2