giai bat phuong trinh va bieu dien ngiem tren truc so
x(x^2+2) > x^3-x+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
0 8/3
Chúc bn học tốt❤
Câu 1:
a) \(7x-14=0\Leftrightarrow7x=14\Leftrightarrow x=2\)2
Vậy tập nghiệm của phương trình là S={2}
b) \(\left(3x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
Vậy......................
c)\(\left(3x-1\right)=x-2\)
\(\Leftrightarrow\)\(3x-1-x+2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)Vậy...................
Câu 2:a)
\(2x+5\le9\Leftrightarrow2x\le4\)
\(\Leftrightarrow x\le2\)vậy......
b)\(3x+4< 5x-3\)
\(\Leftrightarrow2x>7\Leftrightarrow x>\frac{2}{7}\)
Vậy..........
c)\(\frac{\left(3x-1\right)}{4}>2\)
\(\Leftrightarrow3x-1>8\)
\(\Leftrightarrow3x>9\Leftrightarrow x>3\)
vậy.............
Câu 3:a).....
b) Áp dụng định lí pytago vào \(\Delta\)vuong ABC,có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=144+256=20^2\)
\(\Leftrightarrow BC=20\)
Xét \(\Delta\)vuông ABC và \(\Delta\)vuông HBA, có:
\(\widehat{BAH}=\widehat{ACH}\)(cùng phụ với góc ABC)
\(\Rightarrow\Delta\)ABC đồng dạng với\(\Delta\)HBA(g.g)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)
\(\frac{\Rightarrow16}{AH}=\frac{20}{16}\Rightarrow AH=12,8\left(cm\right)\)
giai di giai di giai di............................................................
giai di ma , lam on
2( x - 1 ) - 5 = 3( 5 - 3x)
2x - 2 - 5 = 15 - 9x
2x - 7 = 15 - 9x
2x + 9x = 15 + 7
11x = 22
x = 2
Vậy x = 2
\(2\left(x-1\right)-5=3\left(5-3x\right)\)
\(\Leftrightarrow2x-2-5=15-9x\)
\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)
\(\Leftrightarrow2x-7=15-9x\)
\(\Leftrightarrow2x+9x=15+7\)
\(\Leftrightarrow11x=22\)
\(\Leftrightarrow x=22\div11\)
\(\Leftrightarrow x=2\)
\(\text{Vậy }x=2\)
Ix-1I+Ix-2I>x+3 (1)
Ta xét các TH về giá trị của x:
TH1: \(x< -1\)
(1) \(\leftrightarrow1-x+2-x>x+3\)
\(\leftrightarrow3-x>x+3\)
\(\leftrightarrow x< 0\) (2)
TH2:\(-1\le x< 2\)
(1)\(\leftrightarrow x-1+2-x>x+3\)
\(\leftrightarrow1>x+3\)
\(\leftrightarrow x< -2\)(loại) (3)
TH3:\(x\ge2\)
(1)\(\leftrightarrow x-1+x-2>x+3\)
\(\leftrightarrow2x-3>x+3\)
\(\leftrightarrow x>6\) (4)
Từ (2),(3) và (4) \(\rightarrow\orbr{\begin{cases}x< 0\\x>6\end{cases}}\)
x2 - 3x - 2x +6 = x(x - 3) - 2(x - 3)
=(x - 3)(x - 2)
suy ra ta tìm được nghiệm của pt là x= 3 hoặc x=2
Ta có: x ( x2 + 2 ) > x3 - x + 6 (1)
<=> x3 + 2x > x3 - x + 6
<=> 3x > 6
<=> x > 2
Vậy tập nghiệm của phương trình (1) là S = { x | x > 2 }