K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

Giả sử cả 6 số a,b,c,d,e,g đều đồng thời là các số lẻ.

Áp dụng bài toán phụ:1 số chính phương lẻ khi chia 8 chỉ dư 1

=>a2+b2+c2+d2+e2 chia cho 8 dư 5

Mà g2 chia 8 dư 1

Kết hợp 2 điều trên =>Vô lí

=>5 số trên không đồng thời là số lẻ

Vậy ...

4 tháng 4 2017

Giả sử a,b,c,d,e,g đồng thời là lẻ

1 số chính phương lẻ khi chia 8 chỉ dư 1

=>a2+b2+c2+d2+e2 chia 8 dư 5

Ta có vế trái chia 8 dư 5, vế phải chia 8 dư 1, phương trình ko xảy ra

Vậy 6 số đã cho ko thể đồng thời là số lẻ

4 tháng 4 2017

Gỉa sử tồn tại a,b,c,d,e,f,g thỏa mãn=>\(a^2,b^2,c^2,d^2,e^2\)chia 8 dư 1=> \(g^2\)chia 8 dư 5=> ko là số chính phương

=>ko tồn tại a,b,c,d,e,g lẻ
 

13 tháng 11 2016

các bạn làm kiểu gì vậy

23 tháng 11 2016
  • = hợp số
  • vì bình phương của abcdeg bằng 2 
  • mà 2 lại là hợp số
  • nên abcdeg là hợp số 
23 tháng 11 2016

hợp số nha bạn

k nha

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

18 tháng 2 2020

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)