Chứng tỏ rằng phân số 4m+8/ 2m+3 là phân số tối giản với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt d = ( 4m + 8 , 2m + 3 )
\(\Rightarrow4m+8⋮d\)
\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)
\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯC\left(2\right)\)
\(\Rightarrow d\in\left(1;2\right)\)
Do 2m + 3 là số lẻ nên d là số lẻ
\(\Rightarrow d=1\)
Vậy \(\left(4m+8;2m+3\right)=1\)
Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản
Đặt d = ( 4m + 8 , 2m + 3 )
\(\Rightarrow4m+8⋮d\)
\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)
\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯC\left(2\right)\)
\(\Rightarrow d\in\left(1;2\right)\)
Do 2m + 3 là số lẻ nên d là số lẻ
\(\Rightarrow d=1\)
Vậy \(\left(4m+8;2m+3\right)=1\)
Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản
CM 1 câu còn câu kia làm tương tự nhé!
ĐẶt UC(2m+3,m+1)=d
=> \(\hept{\begin{cases}2m+3⋮d\\m+1⋮d\end{cases}\Leftrightarrow}\)\(2m+3-2\left(m+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số tối giản
P/S: PP chung cho dạng này là đặt UC của tử và mẫu là d rồi bù trừ thích hợp để CM d=1
Nếu giả sử khi bù trừ ta ra được 1 số khác 1, ví dụ như câu b, sau khi tử - 2 lần mẫu sẽ ra \(2⋮d\)=> d=1 hoặc d=2 nhưng mẫu là 2m+3 là số lẻ không chia hết cho 2 nên d=1
Gọi U(2m+9 ; 14m+62) = d
thì: 7*(2m+9) - (14m+62) chia hết cho d
=> 1 chia hết cho d.
Vậy d = 1
Hay số hữu tỷ x tối giản. ĐPCM.
Gọi d =ƯCLN(2m+9; 14m+62)
Vậy 2 m + 9 ⋮ d ⇒ 7 ( 2 m + 9 ) ⋮ d ⇔ 14 m + 63 ⋮ d 14 m + 62 ⋮ d ⇒ 14 m + 63 − ( 14 m + 62 ) ⋮ d ⇔ 1 ⋮ d ⇔ d = 1
Vậy ta được đpcm