Tìm n nguyên để A = 1/ (\(\frac{1}{2011}\)/\(\frac{1}{2011+n}\)) có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{2011(2011+n)}{4022+n}$
Để $A$ nguyên thì: $2011(2011+n)\vdots 4022+n$
$\Rightarrow 2011^2+2011(n+4022)-2011.4022\vdots 4022+n$
$\Rightarrow 2011^2-2011.4022\vdots 4022+n$
$\Rightarrow 2011^2-2011^2.2\vdots 4022+n$
$\Rightarrow 2011^2\vdots 4022+n$
$\Rightarrow 4022+n\in\left\{\pm 1; \pm 2011; \pm 2011^2\right\}$
$\Rightarrow n\in \left\{-4023; -4021; -2011; -6033; 4040099; -4048143\right\}$
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{n\left(n+1\right)}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{n\left(n+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)\)
\(=1-\frac{2}{n+1}\)
\(=\frac{n+1}{n+1}-\frac{2}{n+1}\)
\(=\frac{n-1}{n+1}\)
mấy câu này dễ nhưg làm ra hơi dài đợi chị chút nhé
chị ấn máy tính chắc cx nhanh
nhớ cho chị