Cho a ∈ {7; 11; 13} và b ∈ {15; 0; 41; 32}. Giá trị lớn nhất của phân số \(\dfrac{a}{b}\) là:
A. \(\dfrac{1}{2}\)
B. \(\dfrac{7}{50}\)
C. \(\dfrac{3}{20}\)
D. \(\dfrac{21}{100}\)
CÁC BẠN GIẢI GIÚP MÌNH BÀI NÀY NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+...+7^{119}+7^{120}\)
\(\Rightarrow7A=7^2+7^3+7^4+...+7^{120}+7^{121}\)
\(\Rightarrow7A-A=\left(7^2+7^3+...+7^{120}+7^{121}\right)-\left(7+7^2+...+7^{119}+7^{120}\right)\)
\(\Rightarrow6A=7^2+7^3+...+7^{120}+7^{121}-7-7^2-...-7^{119}-7^{120}\)
\(\Rightarrow6A=7^{121}-7\)
\(\Rightarrow A=\dfrac{7^{121}-7}{6}\)
A=7+72+73+...+72016
=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+8)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8 (đpcm)
A=7+72+73+...+72016
=(7+72+73)+...+(72014+72015+72016)
=7.(1+7+72)+...+72014.(1+7+72)
=7.57+...+72014.57
=57.(7+...+72014) chia hết cho 57 (đpcm)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\\ A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\\ A=\left(1+7+7^2+7^3\right)\left(7+7^5\right)=400\left(7+7^5\right)⋮5\)
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A= ( 7+7^2+7^3+7^4 )+ ( 7^5+7^6+7^7+7^8 ) \)
\(A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^5\cdot400\)
\(A=7\cdot25\cdot16+7^5\cdot25\cdot16\)
\(⋮\text{ }25\) \(⋮\text{ }25\)
\(\text{Vậy }A\text{ }⋮\text{ }25\)
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)
A=1+7+72+...+72019+72020
=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)
=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)
=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)
=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.
\(A=7+7^2+7^3+...+7^8\\=(7+7^2)+(7^3+7^4)+...+(7^7+7^8)\\=7\cdot(1+7)+7^3\cdot(1+7)+...+7^7\cdot(1+7)\\=7\cdot8+7^3\cdot8+...+7^7\cdot8\\=8\cdot(7+7^3+...+7^7)\)
Vì \(8\cdot(7+7^3+...+7^7)\vdots8\)
nên \(A\vdots8\)
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^7+7^8\right)\)
\(A=56+7^2.\left(7+7^2\right)+...+7^6.\left(7+7^2\right)\)
\(A=56+7^2.56+...+7^6.56\)
\(A=56.\left(1+7^2+...+7^6\right)\)
Vì \(56⋮8\) nên \(56.\left(1+7^2+...+7^6\right)⋮8\)
Vậy \(A⋮8\)
\(#WendyDang\)
Chọn A