(x-1)3+(2x-3)3+(3x-5)3-3(x-1)(2x-3)(3x-5)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
\(\left(x-1\right)^3-\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(2x-3\right)^3-\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(3x-5\right)^3-\left(x-1\right)\left(2x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-1\right)^2-\left(2x-3\right)\left(3x-5\right)\right)+\left(2x-3\right)\left(\left(2x-3\right)^2-\left(x-1\right)\left(3x-5\right)\right)+\left(3x-5\right)\left(\left(3x-5\right)^2-\left(x-1\right)\left(2x-3\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(7-5x\right)+\left(2x-3\right)\left(x-2\right)^2+\left(3x-5\right)\left(x-2\right)\left(7x-11\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\left(x-1\right)\left(7-5x\right)+\left(2x-3\right)\left(x-2\right)+\left(3x-5\right)\left(7x-11\right)\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(18x^2-63x+54\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\18x^2-63x+54=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
Ta có (a3 + b3) + c3 - 3abc = 0
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0
<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)
Áp dụng (1) cho bài toán ta được
(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0
<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0
<=> \(\left[{}\begin{matrix}6x-9=0\\\left(x-2\right)^2+\left(x-2\right)^2+\left(2x-4\right)^2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\6.\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0
<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)
Áp dụng (1) cho bài toán ta được
(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0
<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0
<=>
<=>