Cho tam giác ABC vuông tại có AC= 1/2 x BC, kẻ CD là phân giác C ( D thuộc AB) . Kẻ DE vuông góc BC ( E thuộc BC)
1 c/m: tam giác ADC = Tam giác EDC và Tam giác BED = TAM GIÁC CED
2 Tính số đo ACB và BDC
3 Gọi H là giao điểm CD và AE c/m CD vuông góc AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a) Xét tam giác CED và tam giác CAB có:
góc C chung
góc CED = góc CAB = 90 độ
=> Tam giác CED đồng dạng tam giác CAB.
b) Theo định lí Pythago, ta sẽ có: AB2+AC2=BC2 <=> BC=15 (cm)
Tam giác CED đồng dạng tam giác CAB (chứng minh trên)
=> \(\frac{CD}{CB}=\frac{ED}{AB}=>\frac{CD}{DE}=\frac{CB}{AB}=>\frac{CD}{DE}=\frac{15}{9}=\frac{5}{3}\)
c) AD là phân giác góc BAC. Theo tính chất đường phân giác trong tam giác, ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{9}{12}=\frac{3}{4}\)
\(=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{7}=\frac{BC}{7}=\frac{15}{7}\)
\(=>CD=\frac{15\times4}{7}=\frac{60}{7}\left(cm\right)\)
Mà \(\frac{CD}{DE}=\frac{5}{3}=>\frac{\frac{60}{7}}{DE}=\frac{5}{3}=>DE=\frac{36}{7}\left(cm\right)\)
Theo định lí Pythago trong tam giác vuông DEC vuông tại E, ta có:
DE2+EC2=DC2 => EC=48/7 (cm)
=> AE=AC-EC=12-48/7=36/7 (cm)
Kẻ DK vuông góc AB
Ta có: Tứ giác KDEA là hình chữ nhật (có 3 góc vuông)
=> DK=AE=36/7 (cm)
Vậy diện tích tam giác ABD là:
\(\frac{AB\times DK}{2}=\frac{9\times\frac{36}{7}}{2}=\frac{162}{7}\left(cm^2\right)\)
b: Xét tứ giác ACED có
AD//CE
AD=CE
Do đó: ACED là hình bình hành
Suy ra: AC//ED
hay ED⊥AB
Đáp án:
Giải thích các bước giải:
a) tam giác ADC và tam giác ECD
AD=FC
chung cạnh CD
Góc D=góc C= 90 độ
suy ra tam giác ADC=tam giác ECD(c.g.c)
b) Ta có AD=CE
AD // CF ( cùng vuông góc BC)
suy ra ADEC là hình bình hành
suy ra DE // AC
mà AB vuông góc AC => DE vuông góc AB
c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)
Ta có góc DAC+góc BAD= 90 độ
mà góc ABC+ góc BAD= 90 độ
=> góc DAC=ABC (2)
Từ (1) và (2) suy ra góc CED=góc ABC
cho mifh xin tích Ạ