Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H ∈ BC). Các
tia phân giác của các góc HAC và AHC cắt nhau ở I. Tia phân giác của góc
HAB cắt BC ở D. Chứng minh rằng CI đi qua trung điểm của AD.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
SK
28 tháng 3 2017
a) Ta có : HAC + HAB = 90
Mà ABC+ BCA = 90 ( do góc A = 90 , tong ba goc trong tam giac = 180)
Bây giờ chứng minh HAB= BCA
Ta có : HAB + HAC = 90
BCA + HAC = 90 (do góc H =90 )
=> HAB = BCA
=> HAC = ABC
góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
Xét ΔCAH có
AI,HI là phân giác
nên I là tâm đường tròn nôi tiếp
=>CI là phân giác của góc ACD
mà ΔCAD cân tại C
nên CI đi qua trung điểm của AD