So sánh :A=2008^2008 +1 /2008^2009 B =2008^2007 +1 /2008^2008+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hơi dài nên bạn bấn vào đây để xem lời giải Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)
\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)
\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)
\(=1+\dfrac{2007}{2008^{2009}+1}\)
\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)
\(=1+\dfrac{2007}{2008^{2008}+1}\)
Ta có: \(2008^{2009}+1>2008^{2008}+1\)
\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)
\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)
\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)
hay \(A < B\)
#\(Toru\)
ta có Đặt \(A=\frac{2008^{2008}+1}{2008^{2009}+1}\)
\(B=\frac{2008^{2007}+1}{2008^{2008}+1}\)
Xét A trước ta có
\(2008A=\frac{2008\left(2008^{2008}+1\right)}{2008^{2009}+1}\)\(2008A=\frac{2008^{2009}+2008}{2008^{2009}+1}\)
\(2008A=\frac{2008^{2009}+1+2007}{2008^{2009}+1}\)suy ra \(2008A=1+\frac{2007}{2008^{2009}+1}\)
Xét B ta có
\(2008B=\frac{2008.\left(2008^{2007}+1\right)}{2008^{2008}+1}\)suy ra \(2008B=\frac{2008^{2008}+2008}{2008^{2008}+1}\)
\(2008B=\frac{2008^{2008}+1+2007}{2008^{2008}+1}\)suy ra \(2008B=1+\frac{2007}{2008^{2008}+1}\)
VÌ \(1+\frac{2007}{2008^{2009}+1}
Đặt \(a=2008^{2007};\)
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}=\frac{2008a+1}{2008^2.a+1};\text{ }B=\frac{2008^{2007}+1}{2008^{2008}+1}=\frac{a+1}{2008a+1}\)
Quy đồng mẫu ta có:
\(A=\frac{\left(2008a+1\right)\left(2008a+1\right)}{\left(2008^2a+1\right)\left(2008a+1\right)}=\frac{2008^2a^2+2.2008a+1}{\left(2008^2a+1\right)\left(2008a+1\right)}\)
\(B=\frac{\left(a+1\right)\left(2008^2a+1\right)}{\left(2008a+1\right)\left(2008^2a+1\right)}=\frac{2008^2a^2+\left(2008^2+1\right)a+1}{\left(2008a+1\right)\left(2008^2a+1\right)}\)
So sánh ở tử ta thấy \(2.2008
ý, nếu không được dùng cách kia thì làm cách này cho chắc đi :v
Ta có: \(2008A=\frac{2008\left(2008^{2008}+1\right)}{2008^{2009}+1}=\frac{2008^{2009}+2008}{2008^{2009}+1}=\frac{\left(2008^{2009}+1\right)+2007}{2008^{2009}+1}=1+\frac{2007}{2008^{2009}+1}\)
Lại có: \(2008B=\frac{2008\left(2008^{2007}+1\right)}{2008^{2008}+1}=\frac{2008^{2008}+2008}{2008^{2008}+1}=\frac{\left(2008^{2008}+1\right)+2007}{2008^{2008}+1}=1+\frac{2007}{2008^{2008}+1}\)
Vì 2008 < 2009 \(\Rightarrow2008^{2008}< 2008^{2009}\)\(\Rightarrow2008^{2008}+1< 2008^{2009}+1\)\(\Rightarrow\frac{2007}{2008^{2008}+1}>\frac{2007}{2008^{2009}+1}\)\(\Rightarrow1+\frac{2007}{2008^{2008}+1}>1+\frac{2007}{2008^{2009}+1}\)\(\Rightarrow2008B>2008A\)\(\Rightarrow B>A\)
Vì A <1 , B < 1
Nên ta có: \(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2008^{2009}+1+2007}=\frac{2008^{2008}+2008}{2008^{2009}+2008}=\frac{2008\left(2008^{2007}+1\right)}{2008\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
https://hoidap247.com/cau-hoi/1164346
Tham khảo vào nhé?