K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

=3.2/1.3.2+3.2/3.5.2+...+3.2/49.51

=3/2.(2/1.3+2/3.5+2/5.7+...+2/49.51)

=3/2.(1-1/3+1/3-1/5+...+1/49-1/51)

=3/2.(1-1/51)

=3/2.50/51

=25/17

CHÚC BẠN HỌC GIỎI

K MÌNH NHÉ

24 tháng 3 2017

A=3/2(2/3.5+2/5.7+...+2/61.63)

=3/2(1/3-1/5+1/5-1/7+...+1/61-1/63)= 3/2(1/3-1/63)=3/2 x 20/63=10/21

Đs: 10/21

6 tháng 7 2023

Ta đặt

  \(A=1\times3+3\times5+...+61\times63\)

\(6A=1\times3\times6+3\times5\times6+....+61\times63\times6\)

\(6A=1\times3\times6+3\times5\times\left(7-1\right)+...+61\times63\times\left(65-59\right)\)

\(6A=1\times3\times6+3\times5\times7-1\times3\times5+...+61\times63\times65-59\times61\times63\)

\(6A=1\times3\times6-1\times3\times5+61\times63\times65\)

\(6A=3+61\times63\times65\)

\(6A=3\times\left(1+61\times21\times65\right)\)

\(2A=83266\)

\(A=83266\div2=41633\)

15 tháng 6 2023

\(1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)

\(=1-\dfrac{62}{195}\)

\(=\dfrac{133}{195}\)

=1-(1/3-1/5+1/5-1/7+...+1/61-1/63)

=1-20/63=43/63

Ta có: \(1-\dfrac{2}{3\cdot5}-\dfrac{2}{5\cdot7}-\dfrac{2}{7\cdot9}-...-\dfrac{2}{61\cdot63}-\dfrac{2}{63\cdot65}\)

\(=1-\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{61\cdot63}+\dfrac{2}{63\cdot65}\right)\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{61}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{65}\right)\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)

\(=1-\dfrac{62}{195}\)

\(=\dfrac{133}{195}\)

11 tháng 7 2016

\(=1-\frac{62}{195}\)

\(=\frac{133}{195}\)

16 tháng 10 2016

6

=7

16 tháng 10 2016

có phải wa đơn giản ko bạn

11 tháng 5 2022

ơi

11 tháng 5 2022

1 tháng 7 2017

Ta có: \(B=1-\dfrac{2}{3.5}-\dfrac{2}{5.7}-\dfrac{2}{7.9}-...-\dfrac{2}{61.63}-\dfrac{2}{63.65}\)

\(=1-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{61.63}+\dfrac{2}{63.65}\right)\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{63}-\dfrac{1}{65}\right)\)

\(=1-\left(\dfrac{1}{3}-\dfrac{1}{65}\right)\)

\(=1-\dfrac{62}{195}=\dfrac{133}{195}.\)

Vậy \(B=\dfrac{133}{195}.\)

1 tháng 7 2017

Thank bạn nhiều nha!