K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

=\(x^3-3x^2-x^2+3x+x-a=\left(x-3\right)\left(x^2-x\right)+\left(x-a\right)\)

vì (x-3)(x^2-x) đã chia hết cho x-3 rồi => đa thức muốn chia hết cho x-3 <=> x-a phải chia hết cho x-3 <=> a=3

18 tháng 4 2023

hơi khó nhìn 😥

21 tháng 11 2018

Để \(\left(4x^4-11x^3-2ax^2+5bx-6\right)⋮\left(x^2-2x-3\right)\) thì :

\(4x^4-11x^3-2ax^2+5bx-6=\left(x^2-2x-3\right)\cdot Q\)

\(4x^4-11x^3-2ax^2+5bx-6=\left(x^2-3x+x-3\right)\cdot Q\)

\(4x^4-11x^3-2ax^2+5bx-6=\left(x-3\right)\left(x+1\right)\cdot Q\)

Vì đẳng thức đúng với mọi x

+) Đặt x = 3 ta có :

\(4\cdot3^4-11\cdot3^3-2\cdot a\cdot3^2+5\cdot b\cdot3-6=\left(3-3\right)\left(3+1\right)\cdot Q\)

\(21-18a+15b=0\)

\(18a-15b=21\left(1\right)\)

+) Đặt x = -1 ta có :

\(4\cdot\left(-1\right)^4-11\cdot\left(-1\right)^3-2\cdot a\cdot\left(-1\right)^2+5\cdot b\cdot\left(-1\right)-6=\left(-1-3\right)\left(-1+1\right)\cdot Q\)

\(9-2a-5b=0\)

\(2a+5b=9\)

\(6a+15b=27\left(2\right)\)

Lấy (1) + (2) ta có : \(18a-15b+6a+15b=21+27\)

\(24a=48\)

\(a=2\)

\(\Rightarrow b=1\)

Vậy a = 2; b = 1

6 tháng 12 2021

?????

22 tháng 3 2022

`Answer:`

Áp dụng định lý Bơdu: `x-3=0<=>x=3`

Thay `x=3` vào đa thức, ta được: `3^2-4.3+m=0<=>9-12+m=0<=>-3+m=0<=>m=3`

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
$2x^3-4x^2+a-10=2x^2(x-2)+a-10$

$\Rightarrow$ để $2x^3-4x^2+a-10$ chia hết cho $x-2$ thì $a-10=0$
$\Leftrightarrow a=10$

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5} 

b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5 
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp) 
TH1: x-3 = -5 <=> x = -2 
TH2: x-3 = -1 <=> x = 2 
TH3: x-3 = 1 <=> x = 4 
TH4: x-3 = 5 <=> x = 8 
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}

2 tháng 5 2019