K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc DFC=góc EBC

góc EFC=góc DAC

góc EBC=góc DAC

=>góc DFC=góc EFC

1: góc AFB=góc AEB=góc ADB=90 độ

=>A,F,B,E,D cùng nằm trên 1 đường tròn

2: Xét ΔAFE và ΔACM có

góc FAE chung

góc AFE=góc ABE=góc ADE=góc MCA

=>ΔAFE đồng dạng với ΔACM

=>AE/AM=AF/AC

=>AM/AC=AE/AF

góc FAB=góc ACB

=>góc FBA=90 độ-góc ACB=góc EBC

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

a) Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)

nên AEDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc OAD+góc OMD=180 độ

=>OADM nội tiếp

b: ΔOBC cân tại O

mà ON là đường cao

nên ONlà trung trực của BC

=>sđ cung NB=sd cung NC

=>góc BAN=góc CAN

=>AN là phân giác của góc BAC

góc DAI=1/2*sđ cung AN

góc DIA=1/2(sđ cung AB+sđ cung NC)

=1/2(sđ cung AB+sđ cung NB)

=1/2*sđ cung AN

=>góc DAI=góc DIA

=>ΔDAI cân tại D

Xét (O) có 

\(\widehat{EAB}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)

\(\widehat{BCE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)

Do đó: \(\widehat{EAB}=\widehat{BCE}\)(Hệ quả góc nội tiếp)

hay \(\widehat{DAB}=\widehat{DCE}\)

Xét ΔDAB vuông tại D và ΔDCE vuông tại D có 

\(\widehat{DAB}=\widehat{DCE}\)(cmt)

Do đó: ΔDAB\(\sim\)ΔDCE(g-g)

Suy ra: \(\dfrac{DA}{DC}=\dfrac{DB}{DE}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow DA\cdot DE=DB\cdot DC\)(đpcm)