cm -x2+(m-1)x+m-4 =0
có 2 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=9-m-3=6-m>0\Rightarrow m< 6\)
Theo hệ thức Viet: \(x_1+x_2=6\Rightarrow\dfrac{x_1+x_2}{2}=3\)
\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(x_1;x_2\) không nhỏ hơn 3
Nếu \(x_2\ge3\Rightarrow\left|x_1-1\right|+3x_2\ge3x_2\ge9\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x_1-1=0\\x_2=3\end{matrix}\right.\) \(\Rightarrow x_1+x_2=4\) (ktm)
\(\Rightarrow x_2< 3\) và \(x_1\ge3\Rightarrow\left|x_1-1\right|=x_1-1\)
Do đó:
\(x_1-1+3x_2=9\Rightarrow x_1=10-3x_2\)
Thế vào \(x_1+x_2=6\Rightarrow10-2x_2=6\Rightarrow x_2=2\Rightarrow x_1=4\)
\(x_1x_2=m+3\Rightarrow m+3=8\Rightarrow m=5\)
\(\Delta=\left(m-2\right)^2-4\left(m+5\right)=m^2-4m+4-4m-20=m^2-16\)
\(\Delta\ge0\Leftrightarrow m\ge4\)
theo hệ thức Vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=m+5\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2-m\right)^2-2\left(m+5\right)=4-4m+m^2-2m-10=m^2-6m-6\)
\(\Delta_1'=\left(-1\right)^2-\left(-6\right)=7\Leftrightarrow\left\{{}\begin{matrix}m_1=1-\sqrt{7}\left(ktm\right)\\m_2=1+\sqrt{7}\left(tm\right)\end{matrix}\right.\)
Vậy,...
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
Mobilegends nữa ko : (((((( 32k vàng rồi nha
Bài này t có thể xài \(\Delta\)hay \(\Delta'\)đều được nhé vì bài này hệ số b chia hết cho 2 nên xài \(\Delta'\)đi cho nó easy hơn 1 tí >:
Công thức: \(\Delta'=b'^2-ac\) chứ xài \(\Delta=b^2-4ac\) nó dài hơn tí
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-4\right).1\)
\(\Delta'=m^2+2m+1-2m+4\)
\(\Delta'=m^2+5>0\) ( luôn đúng )
P/s câu a chỉ cần chứng minh pt đó lớn hơn 0 sẽ có 2 nghiệm phân biệt
b) \(x_1;x_2\) là 2 nghiệm phân biệt của phương trình ( gt )
Xài hệ thức vi - ét =)
\(3\left(x_1+x_2\right)=5x_1x_2\)\(\Leftrightarrow6\left(m+1\right)=5\left(2m-4\right)\)
Tới đây easy rồi giải nốt vs kết luận đi nha :))))
a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
b) Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.
a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)
\(=m^2+6m+9-4m\)
\(=m^2+2m+9\)
\(=m^2+2m+1+8\)
\(=\left(m+1\right)^2+8\)
Lại có: \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)
Vậy phương trình luôn có 2 nghiêm phân biệt
b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)
Theo bài ra:
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m+3\right)^2-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m-6=0\)
\(\Leftrightarrow m^2+4m+3=0\)
\(\Leftrightarrow m^2+m+3m+3=0\)
\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)
\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
Ta có \(\Delta=\left(m-1\right)^2+4\left(m-4\right)=m^2-2m+1+4m-16=m^2+2m-15=\left(m+1\right)^2-16\)
\(\Delta\)chưa chắc đã lớn hơn 0 với mọi m nên pt chưa chắc đã có 2 nghiệm phân biệt
Có thiếu đề ko bn?