tính tổng: S= 2021+2022+...+ 2050
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S = B + 2022 + 2023
Số số hạng của B là : ( 2021 - 1 ) : 4 + 1 = 506 ( số )
Tổng B là : ( 2021 + 1 ) . 506 : 2 = 511566
=> S = 511566 + 2022 + 2023
=> S = 515611
Vậy,......
Nhỏ hơn
Ta có 2020/2021 <1
2021/2022 <1
2022/2023 <1
2023/2024 <1
Suy ra A=(2021/2021+2021/2022 +2022/2023 +2023/2024) < (1+1+1+1)= 4
Vậy A <4
Chúc bạn học tốt
\(\dfrac{2020}{2021}< 1\)
\(\dfrac{2021}{2022}< 1\)
\(\dfrac{2021}{2022}< 1\)
\(\dfrac{2023}{2024}< 1\)
Do đó: A<4
\(A=7^{2022}-7^{2021}+7^{2020}-7^{2019}+...+7^2-7\)
\(\Rightarrow7A=7^{2023}-7^{2022}+7^{2021}-...+7^3-7^2\)
\(\Rightarrow8A=A+7A=7^{2022}-7^{2021}+...+7^2-7+7^{2023}-7^{2022}+...+7^3-7^2=7^{2023}-7\)
\(\Rightarrow A=\dfrac{7^{2023}-7}{8}\)
ta có
\(C=2020\times\left(2021^9+2021^8+...+2021^2+2021^1+1\right)+1\)
\(2020\times\frac{2021^{10}-1}{2021-1}+1=2021^{10}-1+1=2021^{10}\)
S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)
= \(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)
2021 không chia hết cho 2
2022 ⋮ 2
432 ⋮ 2
Vậy A không chia hết cho 2
Lời giải:
$S=1-3+3^2-3^3+...-3^{2021}+3^{2022}$
$3S=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}$
$\Rightarrow S+3S=3^{2023}-1$
$\Rightarrow 4S=3^{2023}-1$
$\Rightarrow 4S-3^{2023}=-1$
khoảng cách : `1`
số số hạng là :`(2050-2021):1+1=30`
tổng là : `(2050 +2021) . 30 :2=61065`
giup tớ