1) Cho 3 số a;b;c thỏa mãn : \(0< a\le b\le c< 1\)1
Chứng minh rằng :\(\frac{a}{b.c+1}+\frac{b}{a.c+1}+\frac{c}{b.a+1}\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tất cả các số đã cho đều lẻ
=>Quy đồng, ta được:
\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)
Tử có 2022 số hạng, mẫu là số lẻ
=>A là số chẵn khác 1
=>Trái GT
=>Phải có ít nhất 1 số là số chẵn
a: A chia hết cho 9
=>4+a+5+1+2 chia hết cho 9
=>a=6
c: =>1-(x+7/18):3/4=0
=>(x+7/18):3/4=1
=>x+7/18=3/4
=>x=13/36