K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 8 2021

\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2\)

\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{8}{\left(a+b\right)^2}=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2\left(a+b\right)^2}+\dfrac{15}{2\left(a+b\right)^2}\)

\(P\ge\dfrac{1}{2}.2\sqrt{\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{15}{2.1^2}=\dfrac{17}{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

NV
23 tháng 7 2021

Lý do gì mà người ra đề lại chọn 1 con số xấu phi lý như 9 ở đây nhỉ? Vì con số này là ko có ý nghĩa (2, 3, 4, 6 hay 9 gì thì cách giải đều giống nhau, nhưng việc chọn 9 khiến kết quả xấu khủng khiếp)

\(9=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le3\sqrt{2}\)

\(P=\dfrac{ab}{a+b+3}\le\dfrac{\left(a+b\right)^2}{4\left(a+b+3\right)}\)

Đặt \(a+b=x\Rightarrow0< x\le3\sqrt{2}\)

\(4P\le\dfrac{x^2}{x+3}=\dfrac{x^2}{x+3}+6-6\sqrt{2}-6+6\sqrt{2}\)

\(4P\le\dfrac{x^2+\left(6-6\sqrt{2}\right)x+18-18\sqrt{2}}{x+3}-6+6\sqrt{2}\)

\(4P\le\dfrac{\left(x-3\sqrt{2}\right)\left(x+6-3\sqrt{2}\right)}{x+3}-6+6\sqrt{2}\le-6+6\sqrt{2}\)

\(P\le\dfrac{-3+3\sqrt{2}}{2}\)

\(P_{max}=\dfrac{-3+3\sqrt{2}}{2}\) khi \(x=3\sqrt{2}\) hay \(a=b=\dfrac{3\sqrt{2}}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2023

Lời giải:

Áp dụng BĐT AM-GM:

$\sqrt{a^3}+\sqrt{a}\geq 2\sqrt{\sqrt{a^3}.\sqrt{a}}=2a$

$\sqrt{b^3}+\sqrt{b}\geq 2\sqrt{\sqrt{b^3}.\sqrt{b}}=2b$

Cộng hai BĐT trên ta có:

$\sqrt{a^3}+\sqrt{b^3}+\sqrt{a}+\sqrt{b}\geq 2(a+b)$

$\Rightarrow B+\sqrt{a}+\sqrt{b}\geq 4(1)$

Áp dụng tiếp BĐT AM-GM:

$(\sqrt{a}+\sqrt{b})^2\leq (a+b)(1+1)=2.2=4\Rightarrow \sqrt{a}+\sqrt{b}\leq 2(2)$

Từ $(1); (2)\Rightarrow B\geq 4-2=2$

Vậy $B_{\min}=2$.

 

AH
Akai Haruma
Giáo viên
3 tháng 11 2023

Lời giải:

Áp dụng BĐT AM-GM:

$\sqrt{a^3}+\sqrt{a}\geq 2\sqrt{\sqrt{a^3}.\sqrt{a}}=2a$

$\sqrt{b^3}+\sqrt{b}\geq 2\sqrt{\sqrt{b^3}.\sqrt{b}}=2b$

Cộng hai BĐT trên ta có:

$\sqrt{a^3}+\sqrt{b^3}+\sqrt{a}+\sqrt{b}\geq 2(a+b)$

$\Rightarrow B+\sqrt{a}+\sqrt{b}\geq 4(1)$

Áp dụng tiếp BĐT AM-GM:

$(\sqrt{a}+\sqrt{b})^2\leq (a+b)(1+1)=2.2=4\Rightarrow \sqrt{a}+\sqrt{b}\leq 2(2)$

Từ $(1); (2)\Rightarrow B\geq 4-2=2$

Vậy $B_{\min}=2$.

3 tháng 11 2023

em cảm ơn ạ

 

NV
5 tháng 10 2021

\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)

\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)

Dấu "=" xảy ra khi \(a=b=2\)

NV
10 tháng 9 2021

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)