Tìm \(x,y\in Z\) thỏa:
\(\left(x+1\right)^2+\left(y-3\right)^2=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nhận xét sau:
\(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)
Tương tự với các phân thức còn lại
Ta đặt:
\(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)
\(\Rightarrow abc=1\) và \(a,b,c>0\)
Biểu thức P trở thành:
\(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)
Dễ thấy:
\(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)
\(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)
Do đó:
\(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bất đẳng thức AM - GM:
\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).
Áp dụng bất đẳng thức AM - GM ta có:
\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).
Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).
Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)
\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).
Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)
Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)
\(\Rightarrow P\ge\dfrac{15}{2}\).
Vậy...
Áp dụng bất đẳng thức AM - GM:
P≥33√(xy+1)(yz+1)(zx+1)xyz.
Áp dụng bất đẳng thức AM - GM ta có:
xy+1=xy+14+14+14+14≥55√xy44.
Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.
Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412
⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.
Mà xyz≤(x+y+z)327=18
Nên (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258
⇒P≥152.
bài này cần x,y,z>0 nữa, vừa xem xong bài y hệt của LCC :v
Dự đoán dấu "=" khi \(x=y=z=1\) thì \(P=24\)
Ta chứng minh P=24 là GTNN
Thật vậy áp dụng BĐT C-S ta có:
\(P=Σ\frac{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}{\left(z^2+1\right)\left(x+y\right)^2}\ge\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\)
Cần chứng minh: \(\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\ge24\)
\(\Leftrightarrow\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2\ge24Σ\left(z^2+1\right)\left(x+y\right)^2\)
Đặt \(\hept{\begin{cases}x+y+z=3u\\xy+yz+xz=3v^2\\xyz=w^3\end{cases}}\) \(\Rightarrow u=1\) thì
\(Σ\left(x+1\right)\left(y+1\right)\left(z+1\right)=Σ\left(x^2y+x^2z+2x^2+2xy+2x\right)\)
\(=9uv^2-3w^3+2u\left(9u^2-6v^2\right)+9uv^2+6u^3=3\left(8u^3+uv^2-w^3\right)\)
Và \(Σ\left(z^2+1\right)\left(x+y\right)^2=2Σ\left(x^2y^2+x^2yz+x^2u+xyu^2\right)\)
\(=2\left(9v^4-6uw^3+3uw^3+9u^4-6u^2v^2+3u^2v^2\right)\)
\(=6\left(3u^4-u^2v^2+3v^4-uw^3\right)\). Can cm \(f\left(w^3\right)\ge0\)
\(f\left(w^3\right)=\left(8u^3+uv^2-w^3\right)^2-16\left(3u^6-u^4v^2+3u^2v^4-u^3w^3\right)\)
\(f'\left(w^3\right)=-2\left(8u^3+uv^2-w^3\right)+16u^3=2w^3-2uv^2\le0\)
Thay \(f\) la ham` ngh!ch bien, do đó, BĐT có 1 GTLN của w3 khi 2 biến bằng nhau
Đặt \(y=x;z=3-2x\), Khi đó:
\(BDT\Leftrightarrow\left(x-1\right)^2\left(x^4-2x^3-11x^2+24x+4\right)\ge0\)
Ta có
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)
\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)
Kết hợp với điều kiện ban đầu thì
GTNN của A là 0 đạt được khi
\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)
\(\left(x+1\right)^2+\left(y-3\right)^2=5\)
Ta nhận xét VT là tổng của 2 số chính phương nên ta phải phân tích VP thành tổng của 2 số chính phương.
Mà \(5=1+4\) nên ta có
\(\left(\left(x+1\right)^2,\left(y-3\right)^2\right)=\left(1,4;4,1\right)\)
Giải ra tìm được các giá trị nguyên x, y
PS: Cái này đơn giản nên b tự làm nhé
khong biet
k